>
Exams
>
Mathematics
>
Integral Calculus
>
evaluate the integral int frac x 2 1 x 4 x 2 1 dx
Question:
Evaluate the integral
\[ \int \frac{x^2+1}{x^4+x^2+1}\,dx \]
Show Hint
When expressions involve \(x\) and \(\frac{1}{x}\), try substitutions like \(x-\frac{1}{x}\) or \(x+\frac{1}{x}\).
MHT CET - 2020
MHT CET
Updated On:
Jan 30, 2026
\( \frac{1}{\sqrt{3}}\tan^{-1}\!\left(\frac{x-\frac{1}{x}}{\sqrt{3}}\right)+c \)
\( \frac{1}{3}\tan^{-1}\!\left(\frac{x-\frac{1}{x}}{3}\right)+c \)
\( \frac{1}{\sqrt{3}}\tan^{-1}\!\left(\frac{x+\frac{1}{x}}{\sqrt{3}}\right)+c \)
\( \frac{1}{3}\tan^{-1}\!\left(\frac{x+\frac{1}{x}}{3}\right)+c \)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Step 1: Divide numerator and denominator by \( x^2 \).
\[ \int \frac{1+\frac{1}{x^2}}{x^2+1+\frac{1}{x^2}}\,dx \]
Step 2: Use substitution.
Let \[ t = x - \frac{1}{x} \Rightarrow dt = \left(1+\frac{1}{x^2}\right)dx \]
Step 3: Simplify the denominator.
\[ x^2 + 1 + \frac{1}{x^2} = t^2 + 3 \]
Step 4: Integrate.
\[ \int \frac{dt}{t^2+3} = \frac{1}{\sqrt{3}}\tan^{-1}\!\left(\frac{t}{\sqrt{3}}\right)+c \]
Step 5: Back substitute.
\[ \boxed{\frac{1}{\sqrt{3}}\tan^{-1}\!\left(\frac{x-\frac{1}{x}}{\sqrt{3}}\right)+c} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Integral Calculus
If \[ \int e^x \left( \frac{x^2 - 2}{\sqrt{1 + x(1 - x)^{3/2}}} \right) \, dx = f(x) + c \quad \text{and} \quad f(0) = 1 \] find \( f\left( \frac{1}{2} \right) \):
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
If
\[ I(x) = 3\int \frac{dx}{(4x+6)\sqrt{4x^2 + 8x + 3}}, \quad I(0) = \frac{\sqrt{3}}{4}, \]
then find \( I(1) \):
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
Find the area bounded by the curves
\[ x^2 + y^2 = 4 \quad \text{and} \quad x^2 + (y-2)^2 = 4. \]
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
If
\[ \int_{0}^{x} t^2 \sin(x - t)\,dt = x^2, \]
then the sum of values of \( x \), where \( x \in [0,100] \), is:
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
The value of
\[ \int_{\frac{\pi}{2}}^{\pi} \frac{dx}{[x]+4} \]
where \([\,\cdot\,]\) denotes the greatest integer function, is
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
View More Questions
Questions Asked in MHT CET exam
Which of the following is not a function of sperm?
MHT CET - 2025
The Male Reproductive System
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
View More Questions