Evaluate the integral:
\[
I = \int \frac{\sin^6 x}{\cos^8 x} \, dx
\]
Step 1: Rewrite the integrand in terms of tangent and secant:
\[
\frac{\sin^6 x}{\cos^8 x} = \frac{\sin^6 x}{\cos^6 x} \cdot \frac{1}{\cos^2 x} = \tan^6 x \sec^2 x
\]
Step 2: Substitute:
\[
t = \tan x \implies dt = \sec^2 x \, dx
\]
Step 3: Rewrite integral in terms of \( t \):
\[
I = \int t^6 \, dt = \frac{t^7}{7} + C = \frac{\tan^7 x}{7} + C
\]
Therefore, the integral evaluates to:
\[
\boxed{\frac{\tan^7 x}{7} + C}
\]