We are asked to evaluate the integral:
\[
I = \int_{-500}^{500} \ln \left( \frac{1000 + x}{1000 - x} \right) dx
\]
Step 1: Let \( f(x) = \ln \left( \frac{1000 + x}{1000 - x} \right) \). Observe that the integrand is an odd function because:
\[
f(-x) = \ln \left( \frac{1000 - x}{1000 + x} \right) = -\ln \left( \frac{1000 + x}{1000 - x} \right) = -f(x)
\]
Step 2: The integral of an odd function over a symmetric interval \( [-a, a] \) is 0, because the areas above and below the x-axis cancel each other out. Therefore:
\[
\int_{-500}^{500} f(x) \, dx = 0
\]
Thus, the value of the integral is \( 0 \).
Therefore, the correct answer is option (D).