To solve the integral \( I = \int \frac{\sin 7x}{\sin 2x \sin 5x} \,dx \), we start by using the identity for a product of sines: \(\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)]\). Apply this to the denominator: \(\sin 2x \sin 5x = \frac{1}{2}[\cos(3x) - \cos(7x)]\). Then:
\[
I = \int \frac{\sin 7x}{\frac{1}{2} (\cos 3x - \cos 7x)} \, dx = 2 \int \frac{\sin 7x}{\cos 3x - \cos 7x} \, dx
\]
Rewrite the identity: \(\cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)\). Applying for \(\cos 3x - \cos 7x\):
\[
\cos 3x - \cos 7x = -2 \sin(5x) \sin(2x)
\]
Substitute back to find:
\[
I = 2 \int \frac{\sin 7x}{-2 \sin 5x \sin 2x} \, dx = - \int \frac{\sin 7x}{\sin 5x \sin 2x} \, dx
\]
Observe \(\sin 7x = \sin(5x + 2x) = \sin 5x \cos 2x + \cos 5x \sin 2x\). Thus:
\[
I = -\int \frac{\sin 5x \cos 2x + \cos 5x \sin 2x}{\sin 5x \sin 2x} \, dx
\]
Break the integral:
\[
I = - \int \left( \frac{\sin 5x \cos 2x}{\sin 5x \sin 2x} + \frac{\cos 5x \sin 2x}{\sin 5x \sin 2x} \right) \, dx
\]
Resulting in:
\[
I = -\int \cot 2x \, dx - \int \frac{\cos 5x}{\sin 5x} \, dx = -\int \cot 2x \, dx - \int \cot 5x \, dx
\]
These integrals evaluate to:
\[
I = -\frac{1}{2} \log |\sin 2x| - \frac{1}{5} \log |\sin 5x| + C
\]
Simplifying, we find:
\[
I = \frac{1}{5} \log |\sin 5x| + \frac{1}{2} \log |\sin 2x| + C
\]
Therefore, the answer is \(\frac{1}{5} \log \sin 5x + \frac{1}{2} \log \sin 2x + c\).