Step 1: Use the property of definite integrals.
Let
\[
I = \int_{0}^{1} \tan^{-1}\!\left( \frac{2x - 1}{1 + x - x^2} \right) dx
\]
Using the property
\[
I = \int_{0}^{1} f(x)\,dx = \int_{0}^{1} f(1-x)\,dx
\]
Step 2: Replace \( x \) by \( 1-x \).
\[
I = \int_{0}^{1} \tan^{-1}\!\left( \frac{1 - 2x}{1 + x - x^2} \right) dx
\]