Step 1: Using the Standard Integral Formula
For integrals of the form:
\[
\int e^{ax} \sin(bx) \, dx
\]
we use the standard formula:
\[
\int e^{ax} \sin(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx).
\]
Step 2: Identifying Constants
Here, we have \( a = 2 \) and \( b = 6 \), so:
\[
I = \int e^{2x+3} \sin 6x \, dx.
\]
Since \( e^{2x+3} = e^3 \cdot e^{2x} \), we factor out \( e^3 \) and apply the formula:
\[
I = e^3 \int e^{2x} \sin 6x \, dx.
\]
Using the formula:
\[
I = \frac{e^{2x+3}}{2^2 + 6^2} (2 \sin 6x - 6 \cos 6x).
\]
Step 3: Evaluating the Denominator
\[
2^2 + 6^2 = 4 + 36 = 40.
\]
Thus,
\[
I = \frac{e^{2x+3}}{40} (2 \sin 6x - 6 \cos 6x).
\]
Simplifying,
\[
I = \frac{e^{2x+3}}{20} (\sin 6x - 3\cos 6x) + C.
\]