Step 1: Simplifying the integrand The given integral is: \[ I = \int_{-1}^{1} \left( \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2} \right) \, dx \] Notice that the integrand involves symmetric limits of integration, i.e., from \( -1 \) to \( 1 \). Let's check if the two terms \( \sqrt{1 + x + x^2} \) and \( \sqrt{1 - x + x^2} \) are symmetric.
Since the integrand is an odd function (the subtraction of two functions that are symmetric about the origin), the integral of an odd function over a symmetric interval from \( -a \) to \( a \) is zero. Thus, the value of the integral is: \[ I = 0 \]
The range of the real valued function \( f(x) =\) \(\sin^{-1} \left( \frac{1 + x^2}{2x} \right)\) \(+ \cos^{-1} \left( \frac{2x}{1 + x^2} \right)\) is:
If \(3A = \begin{bmatrix} 1 & 2 & 2 \\[0.3em] 2 & 1 & -2 \\[0.3em] a & 2 & b \end{bmatrix}\) and \(AA^T = I\), then\(\frac{a}{b} + \frac{b}{a} =\):
\(\begin{vmatrix} a+b+2c & a & b \\[0.3em] c & b+c+2c & b \\[0.3em] c & a & c+a2b \end{vmatrix}\)