Step 1: Split the integral based on the absolute value
We are asked to evaluate:
\[
I = \int_1^5 \left( |x - 3| + |1 - x| \right) \, dx
\]
First, break the absolute values into pieces based on the points where the expressions inside the absolute values change sign:
- \( |x - 3| \) changes sign at \( x = 3 \),
- \( |1 - x| \) changes sign at \( x = 1 \).
Thus, we split the integral into two parts:
\[
I = \int_1^3 \left( (3 - x) + (1 - x) \right) \, dx + \int_3^5 \left( (x - 3) + (x - 1) \right) \, dx
\]
Step 2: Evaluate the integrals
Now evaluate each part:
For \( \int_1^3 \left( (3 - x) + (1 - x) \right) \, dx \):
\[
I_1 = \int_1^3 (4 - 2x) \, dx = \left[ 4x - x^2 \right]_1^3 = (12 - 9) - (4 - 1) = 3 - 3 = 0
\]
For \( \int_3^5 \left( (x - 3) + (x - 1) \right) \, dx \):
\[
I_2 = \int_3^5 (2x - 4) \, dx = \left[ x^2 - 4x \right]_3^5 = (25 - 20) - (9 - 12) = 5 + 3 = 8
\]
Thus, the value of the integral is:
\[
I = 0 + 8 = 12
\]