Question:

Evaluate the following limit: $ \lim_{\theta \to 0} \frac{\theta \sin 2\theta}{1 - \cos 2\theta} $

Show Hint

For small angle limits, use the approximations \( \sin \theta \approx \theta \) and \( 1 - \cos \theta \approx \frac{\theta^2}{2} \).
Updated On: Apr 28, 2025
  • \( 0 \)
  • \( 1 \)
  • \( 2 \)
  • \( 4 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We are given: \[ \lim_{\theta \to 0} \frac{\theta \sin 2\theta}{1 - \cos 2\theta} \] We can use the small angle approximation \( \sin \theta \approx \theta \) and \( 1 - \cos \theta \approx \frac{\theta^2}{2} \) when \( \theta \) is small.
Thus, the limit becomes: \[ \lim_{\theta \to 0} \frac{\theta \cdot 2\theta}{\frac{2\theta^2}{2}} = \lim_{\theta \to 0} \frac{2\theta^2}{\theta^2} = 2 \]
Thus, the value of the limit is \( 2 \).
Was this answer helpful?
0
0