We are given:
\[
\lim_{\theta \to 0} \frac{\theta \sin 2\theta}{1 - \cos 2\theta}
\]
We can use the small angle approximation \( \sin \theta \approx \theta \) and \( 1 - \cos \theta \approx \frac{\theta^2}{2} \) when \( \theta \) is small.
Thus, the limit becomes:
\[
\lim_{\theta \to 0} \frac{\theta \cdot 2\theta}{\frac{2\theta^2}{2}} = \lim_{\theta \to 0} \frac{2\theta^2}{\theta^2} = 2
\]
Thus, the value of the limit is \( 2 \).