We are given the expression:
\[
\sin 21^\circ \cos 9^\circ - \cos 84^\circ \cos 6^\circ
\]
We can simplify this expression using trigonometric identities. Using the identity for the product of sines and cosines:
\[
\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]
\]
Step 1: Simplify \( \sin 21^\circ \cos 9^\circ \):
\[
\sin 21^\circ \cos 9^\circ = \frac{1}{2} [\sin(21^\circ + 9^\circ) + \sin(21^\circ - 9^\circ)] = \frac{1}{2} [\sin 30^\circ + \sin 12^\circ]
\]
Since \( \sin 30^\circ = \frac{1}{2} \), this becomes:
\[
\frac{1}{2} \left[\frac{1}{2} + \sin 12^\circ \right] = \frac{1}{4} + \frac{1}{2} \sin 12^\circ
\]
Step 2: Simplify \( \cos 84^\circ \cos 6^\circ \):
\[
\cos 84^\circ \cos 6^\circ = \frac{1}{2} [\cos(84^\circ - 6^\circ) + \cos(84^\circ + 6^\circ)] = \frac{1}{2} [\cos 78^\circ + \cos 90^\circ]
\]
Since \( \cos 90^\circ = 0 \), this simplifies to:
\[
\frac{1}{2} \cos 78^\circ
\]
Step 3: Combine the terms:
Now substitute the expressions back into the original equation:
\[
\frac{1}{4} + \frac{1}{2} \sin 12^\circ - \frac{1}{2} \cos 78^\circ
\]
Using approximate values for the trigonometric functions:
\[
\sin 12^\circ \approx 0.2079, \quad \cos 78^\circ \approx 0.2079
\]
Thus, the expression becomes:
\[
\frac{1}{4} + \frac{1}{2} \times 0.2079 - \frac{1}{2} \times 0.2079 = \frac{1}{4}
\]
Hence, the final answer is \( \frac{1}{4} \).