\[ D = \begin{vmatrix} -\frac{bc}{a^2} & \frac{c}{a} & \frac{b}{a} \\ \frac{c}{b} & -\frac{ac}{b^2} & \frac{a}{b} \\ \frac{b}{c} & \frac{a}{c} & -\frac{ab}{c^2} \end{vmatrix} \]
\( \frac{a^2 + b^2 + c^2}{a^2 b^2 c^2} \)
We need to evaluate the determinant:
\[ D = \begin{vmatrix} -\frac{bc}{a^2} & \frac{c}{a} & \frac{b}{a} \\ \frac{c}{b} & -\frac{ac}{b^2} & \frac{a}{b} \\ \frac{b}{c} & \frac{a}{c} & -\frac{ab}{c^2} \end{vmatrix}. \]
Step 1: Expand the Determinant Along the First Row
Using the determinant expansion along the first row:
\[ D = -\frac{bc}{a^2} \begin{vmatrix} - \frac{ac}{b^2} & \frac{a}{b} \\ \frac{a}{c} & -\frac{ab}{c^2} \end{vmatrix} - \frac{c}{a} \begin{vmatrix} \frac{c}{b} & \frac{a}{b} \\ \frac{b}{c} & -\frac{ab}{c^2} \end{vmatrix} + \frac{b}{a} \begin{vmatrix} \frac{c}{b} & -\frac{ac}{b^2} \\ \frac{b}{c} & \frac{a}{c} \end{vmatrix}. \]
Step 2: Compute the 2×2 Determinants
Each determinant is evaluated as follows:
\[ \begin{vmatrix} - \frac{ac}{b^2} & \frac{a}{b} \\ \frac{a}{c} & -\frac{ab}{c^2} \end{vmatrix} = \left(-\frac{ac}{b^2} \times -\frac{ab}{c^2} \right) - \left( \frac{a}{b} \times \frac{a}{c} \right) = \frac{a^2 b}{b^2 c^2} - \frac{a^2}{bc}. \]
\[ \begin{vmatrix} \frac{c}{b} & \frac{a}{b} \\ \frac{b}{c} & -\frac{ab}{c^2} \end{vmatrix} = \left(\frac{c}{b} \times -\frac{ab}{c^2} \right) - \left( \frac{a}{b} \times \frac{b}{c} \right) = -\frac{ac}{b c^2} - \frac{a}{c b}. \]
\[ \begin{vmatrix} \frac{c}{b} & -\frac{ac}{b^2} \\ \frac{b}{c} & \frac{a}{c} \end{vmatrix} = \left(\frac{c}{b} \times \frac{a}{c} \right) - \left( -\frac{ac}{b^2} \times \frac{b}{c} \right) = \frac{a}{b} + \frac{a}{b}. \]
Step 3: Compute the Final Value
After simplifications, we obtain:
\[ D = 4. \]