We are tasked with evaluating:
\[
\sin\left(\tan^{-1}\frac{4}{5} + \tan^{-1}\frac{4}{3} + \tan^{-1}\frac{1}{9} - \tan^{-1}\frac{1}{7}\right).
\]
Step 1: Simplify using the identity for the sum of arctangents.
The addition formula for arctangents is:
\[
\tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right), \quad \text{if } xy<1.
\]
Apply this identity to pairs of terms:
\[
\tan^{-1}\frac{4}{5} + \tan^{-1}\frac{1}{9} = \tan^{-1}\left(\frac{\frac{4}{5} + \frac{1}{9}}{1 - \frac{4}{5} \cdot \frac{1}{9}}\right).
\]
Simplify the expression:
\[
\tan^{-1}\left(\frac{\frac{36}{45} + \frac{5}{45}}{1 - \frac{4}{45}}\right) = \tan^{-1}\left(\frac{\frac{41}{45}}{\frac{41}{45}}\right) = \tan^{-1}(1).
\]
Similarly:
\[
\tan^{-1}\frac{4}{3} - \tan^{-1}\frac{1}{7} = \tan^{-1}\left(\frac{\frac{4}{3} - \frac{1}{7}}{1 + \frac{4}{3} \cdot \frac{1}{7}}\right).
\]
Simplify:
\[
\tan^{-1}\left(\frac{\frac{28}{21} - \frac{3}{21}}{1 + \frac{4}{21}}\right) = \tan^{-1}\left(\frac{\frac{25}{21}}{\frac{25}{21}}\right) = \tan^{-1}(1).
\]
Step 2: Combine the results.
Now, the expression becomes:
\[
\sin\left(\tan^{-1}(1) + \tan^{-1}(1)\right).
\]
Step 3: Simplify further.
Since \(\tan^{-1}(1) = \frac{\pi}{4}\), we have:
\[
\sin\left(\frac{\pi}{4} + \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{2}\right).
\]
Since \(\sin\left(\frac{\pi}{2}\right) = 1\), the final result is:
\[
\boxed{1}.
\]