>
Exams
>
Mathematics
>
Vectors
>
evaluate sin left tan 1 frac 4 5 tan 1 frac 4 3 ta
Question:
Evaluate \( \sin \left( \tan^{-1}\frac{4}{5} + \tan^{-1}\frac{4}{3} + \tan^{-1}\frac{1}{9} - \tan^{-1}\frac{1}{7} \right) \):
Show Hint
For trigonometric sums involving inverse functions, use addition and subtraction formulas to simplify the expressions before evaluating.
MHT CET - 2024
MHT CET
Updated On:
Jan 13, 2026
\( \frac{1}{2} \)
\( \frac{1}{\sqrt{2}} \)
\( \frac{\sqrt{3}}{2} \)
\( 1 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
We are tasked with evaluating: \[ \sin\left(\tan^{-1}\frac{4}{5} + \tan^{-1}\frac{4}{3} + \tan^{-1}\frac{1}{9} - \tan^{-1}\frac{1}{7}\right). \]
Step 1:
Simplify using the identity for the sum of arctangents. The addition formula for arctangents is: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right), \quad \text{if } xy<1. \] Apply this identity to pairs of terms: \[ \tan^{-1}\frac{4}{5} + \tan^{-1}\frac{1}{9} = \tan^{-1}\left(\frac{\frac{4}{5} + \frac{1}{9}}{1 - \frac{4}{5} \cdot \frac{1}{9}}\right). \] Simplify the expression: \[ \tan^{-1}\left(\frac{\frac{36}{45} + \frac{5}{45}}{1 - \frac{4}{45}}\right) = \tan^{-1}\left(\frac{\frac{41}{45}}{\frac{41}{45}}\right) = \tan^{-1}(1). \] Similarly: \[ \tan^{-1}\frac{4}{3} - \tan^{-1}\frac{1}{7} = \tan^{-1}\left(\frac{\frac{4}{3} - \frac{1}{7}}{1 + \frac{4}{3} \cdot \frac{1}{7}}\right). \] Simplify: \[ \tan^{-1}\left(\frac{\frac{28}{21} - \frac{3}{21}}{1 + \frac{4}{21}}\right) = \tan^{-1}\left(\frac{\frac{25}{21}}{\frac{25}{21}}\right) = \tan^{-1}(1). \]
Step 2:
Combine the results. Now, the expression becomes: \[ \sin\left(\tan^{-1}(1) + \tan^{-1}(1)\right). \]
Step 3:
Simplify further. Since \(\tan^{-1}(1) = \frac{\pi}{4}\), we have: \[ \sin\left(\frac{\pi}{4} + \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{2}\right). \] Since \(\sin\left(\frac{\pi}{2}\right) = 1\), the final result is: \[ \boxed{1}. \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Vectors
Number of functions \( f: \{1, 2, \dots, 100\} \to \{0, 1\} \), that assign 1 to exactly one of the positive integers less than or equal to 98, is equal to:
JEE Main - 2025
Mathematics
Vectors
View Solution
Let \( \vec{a} \) be a position vector whose tip is the point (2, -3). If \( \overrightarrow{AB} = \vec{a} \), where coordinates of A are (–4, 5), then the coordinates of B are:
CBSE CLASS XII - 2025
Mathematics
Vectors
View Solution
If vector $\vec{a} = 2\hat{i} + m\hat{j} + \hat{k}$ and vector $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other, then the value of $m$ is
IPU CET - 2025
Mathematics
Vectors
View Solution
For a force F to be conservative, the relations to be satisfied are:
A. \(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = 0\)
B. \(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = 0\)
C. \(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = 0\)
D. \(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \neq 0\)
Choose the correct answer from the options given below:
CUET (PG) - 2025
Physics
Vectors
View Solution
If \(|\vec{A}+\vec{B}| = |\vec{A}-\vec{B}|\) then the angle between vectors \(\vec{A}\) and \(\vec{B}\) is:
CUET (PG) - 2025
Physics
Vectors
View Solution
View More Questions
Questions Asked in MHT CET exam
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions