\( -1 \)
We need to evaluate: \[ \sin 20^\circ (4 + \sec 20^\circ) \]
Step 1: Express \(\sec 20^\circ\) in terms of \(\cos 20^\circ\)
Since \[ \sec 20^\circ = \frac{1}{\cos 20^\circ} \] we rewrite the given expression as: \[ \sin 20^\circ \left( 4 + \frac{1}{\cos 20^\circ} \right) \]
Step 2: Expand the expression
Distribute \( \sin 20^\circ \): \[ 4 \sin 20^\circ + \sin 20^\circ \cdot \frac{1}{\cos 20^\circ} \] Using the identity: \[ \frac{\sin x}{\cos x} = \tan x \] we obtain: \[ 4 \sin 20^\circ + \tan 20^\circ \]
Step 3: Substitute values of \(\sin 20^\circ\) and \(\tan 20^\circ\)
From trigonometric tables: \[ \sin 20^\circ \approx 0.342 \] \[ \tan 20^\circ \approx 0.364 \] Substituting these: \[ 4(0.342) + 0.364 = 1.368 + 0.364 = 1.732 \] Since: \[ 1.732 = \sqrt{3} \] we conclude: \[ \sin 20^\circ (4 + \sec 20^\circ) = \sqrt{3} \] Thus, the correct answer is \( \mathbf{\sqrt{3}} \).