We use standard integral:
\[
\begin{align}
\int \frac{dx}{1 + a \cos x} =
\frac{1}{\sqrt{a^2 - 1}} \log \left( \frac{\sqrt{a + 1} \tan \left( \frac{x}{2} \right) + \sqrt{a - 1}}{\sqrt{a + 1} \tan \left( \frac{x}{2} \right) - \sqrt{a - 1}} \right)
\]
Using substitution \( \tan \frac{x}{2} = t \), and other trigonometric identities:
Eventually, for \( a>1 \), it simplifies into:
\[
\begin{align}
\frac{1}{\sqrt{a^2 - 1}} \log \left( \frac{ \sqrt{a+1} \cos \frac{x}{2} + \sqrt{a - 1} \sin \frac{x}{2} }{ \sqrt{a+1} \cos \frac{x}{2} - \sqrt{a - 1} \sin \frac{x}{2} } \right) + C
\]