Step 1: Simplify the integrand
Use the identity \( 1 + \cos 2x = 2\cos^2 x \) and \( \sin 2x = 2\sin x \cos x \): \[ \frac{2 + \sin 2x}{1 + \cos 2x} = \frac{2 + 2\sin x \cos x}{2\cos^2 x} = \sec^2 x + \tan x. \] Step 2: Rewrite the integral
\[ I = \int (\sec^2 x + \tan x) e^x \, dx. \] Step 3: Integrate term by term
For \( \int \sec^2 x e^x \, dx \), use substitution \( u = \tan x \): \[ \int \sec^2 x e^x \, dx = e^x \tan x. \] For \( \int \tan x e^x \, dx \), combine it with the first term: \[ I = e^x \tan x + C. \]

Comparative Financial Data as on 31st March, 2024 and 2023
| Particulars | 31.03.2024 (₹) | 31.03.2023 (₹) |
|---|---|---|
| Surplus (P&L) | 17,00,000 | 8,00,000 |
| Patents | -- | 50,000 |
| Sundry Debtors | 5,80,000 | 4,20,000 |
| Sundry Creditors | 1,40,000 | 60,000 |
| Cash and Cash Equivalents | 2,00,000 | 90,000 |