Step 1: Simplify the integrand
Use the identity \( 1 + \cos 2x = 2\cos^2 x \) and \( \sin 2x = 2\sin x \cos x \): \[ \frac{2 + \sin 2x}{1 + \cos 2x} = \frac{2 + 2\sin x \cos x}{2\cos^2 x} = \sec^2 x + \tan x. \] Step 2: Rewrite the integral
\[ I = \int (\sec^2 x + \tan x) e^x \, dx. \] Step 3: Integrate term by term
For \( \int \sec^2 x e^x \, dx \), use substitution \( u = \tan x \): \[ \int \sec^2 x e^x \, dx = e^x \tan x. \] For \( \int \tan x e^x \, dx \), combine it with the first term: \[ I = e^x \tan x + C. \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals