Step 1: Simplify the integrand
Use the identity \( 1 + \cos 2x = 2\cos^2 x \) and \( \sin 2x = 2\sin x \cos x \): \[ \frac{2 + \sin 2x}{1 + \cos 2x} = \frac{2 + 2\sin x \cos x}{2\cos^2 x} = \sec^2 x + \tan x. \] Step 2: Rewrite the integral
\[ I = \int (\sec^2 x + \tan x) e^x \, dx. \] Step 3: Integrate term by term
For \( \int \sec^2 x e^x \, dx \), use substitution \( u = \tan x \): \[ \int \sec^2 x e^x \, dx = e^x \tan x. \] For \( \int \tan x e^x \, dx \), combine it with the first term: \[ I = e^x \tan x + C. \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: