This integral can be evaluated using a substitution method.
Step 1: Apply substitution.
Let \( u = x^3 \), which gives \( du = 3x^2 \, dx \). Adjust the limits of integration:
When \( x = 0 \), \( u = 0 \); and when \( x = a \), \( u = a^3 \).
The integral becomes:
\[
\int_0^{a^3} \frac{1}{u^2 + a^6} \, du.
\]
Step 2: Use the standard integral formula.
For the integral \( \frac{1}{u^2 + b^2} \), the result is:
\[
\int \frac{1}{u^2 + b^2} \, du = \frac{1}{b} \tan^{-1} \left( \frac{u}{b} \right).
\]
Here, \( b = a^3 \), so:
\[
\int_0^{a^3} \frac{1}{u^2 + a^6} \, du = \frac{1}{a^3} \tan^{-1} \left( \frac{u}{a^3} \right) \Bigg|_0^{a^3}.
\]
Step 3: Evaluate the limits.
Substitute the limits into the expression:
\[
\frac{1}{a^3} \left[ \tan^{-1} \left( \frac{a^3}{a^3} \right) - \tan^{-1} \left( 0 \right) \right].
\]
Step 4: Simplify.
Simplify the result:
\[
= \frac{1}{a^3} \left[ \tan^{-1}(1) - 0 \right] = \frac{1}{a^3} \cdot \frac{\pi}{4}.
\]
Final Answer:
\[
\boxed{\frac{\pi}{4a^3}}.
\]