Let:
\[
\begin{align}
I = \int_0^4 \frac{x+2}{\sqrt{4x - x^2}}\, dx
= \int_0^4 \frac{x+2}{\sqrt{-(x^2 - 4x)}}\, dx
= \int_0^4 \frac{x+2}{\sqrt{-(x - 2)^2 + 4}}\, dx
\]
Make substitution:
\[
x = 2 + 2\sin\theta \Rightarrow dx = 2\cos\theta\, d\theta
\]
Then:
\[
\sqrt{4 - (x - 2)^2} = \sqrt{4 - 4\sin^2\theta} = 2\cos\theta
\]
Bounds:
When \( x = 0 \Rightarrow \theta = -\frac{\pi}{2} \), and \( x = 4 \Rightarrow \theta = \frac{\pi}{2} \)
So the integral becomes:
\[
\begin{align}
I = \int_{-\pi/2}^{\pi/2} \frac{2\sin\theta + 4}{2\cos\theta} \cdot 2\cos\theta\, d\theta
= \int_{-\pi/2}^{\pi/2} (2\sin\theta + 4)\, d\theta
\]
\[
\begin{align}
= \int_{-\pi/2}^{\pi/2} 2\sin\theta\, d\theta + \int_{-\pi/2}^{\pi/2} 4\, d\theta = 0 + 4\pi/2 = \pi
\]