Step 1: Use the substitution for definite integrals:
\[
I = \int_{0}^{\pi/2} f(x) dx.
\text{Try } x \mapsto \frac{\pi}{2} - x.
\]
Let’s check:
\[
f\Big( \frac{\pi}{2} - x \Big)
= \frac{ \Big( \frac{\pi}{2} - x \Big) \sin(\frac{\pi}{2} - x) \cos(\frac{\pi}{2} - x) }
{ \sin^4(\frac{\pi}{2} - x) + \cos^4(\frac{\pi}{2} - x) }.
\]
But:
\[
\sin(\frac{\pi}{2} - x) = \cos x, \cos(\frac{\pi}{2} - x) = \sin x.
\]
So,
\[
f\Big( \frac{\pi}{2} - x \Big)
= \frac{ [\frac{\pi}{2} - x] \sin x \cos x }{ \cos^4 x + \sin^4 x }.
\]
So:
\[
I = \int_{0}^{\pi/2} f(x) dx
= \int_{0}^{\pi/2} f\Big( \frac{\pi}{2} - x \Big) dx.
\]
Add:
\[
2I = \int_{0}^{\pi/2} [f(x) + f(\frac{\pi}{2} - x)] dx.
\]
So,
\[
2I = \int_{0}^{\pi/2} \Bigg[
\frac{ x \sin x \cos x + (\frac{\pi}{2} - x)\sin x \cos x }{ \sin^4 x + \cos^4 x }
\Bigg] dx.
\]
Combine numerator:
\[
2I = \int_{0}^{\pi/2}
\frac{ \frac{\pi}{2} \sin x \cos x }{ \sin^4 x + \cos^4 x } dx.
\]
So,
\[
2I = \frac{\pi}{2} \int_{0}^{\pi/2}
\frac{ \sin x \cos x }{ \sin^4 x + \cos^4 x } dx.
\]
Step 2: Substitute $\sin^2 x = t$.
\[
\text{Let } t = \sin^2 x, dt = 2 \sin x \cos x\, dx.
\]
So,
\[
\sin x \cos x\, dx = \frac{1}{2} dt.
\text{When } x = 0, t = 0; x = \frac{\pi}{2} \implies t = 1.
\]
So,
\[
2I = \frac{\pi}{2} \times \frac{1}{2} \int_{0}^{1} \frac{dt}{t^2 + (1 - t)^2}.
\]
Step 3: Expand denominator:
\[
t^2 + (1 - t)^2 = t^2 + 1 - 2t + t^2 = 2t^2 - 2t + 1.
\]
So,
\[
2I = \frac{\pi}{4} \int_{0}^{1} \frac{dt}{2t^2 - 2t + 1}
= \frac{\pi}{4} \int_{0}^{1} \frac{dt}{2(t^2 - t + \frac{1}{2})}.
\]
Complete square:
\[
t^2 - t + \frac{1}{2} = t^2 - t + \frac{1}{4} + \frac{1}{4} = (t - \frac{1}{2})^2 + \frac{1}{4}.
\]
So,
\[
2I = \frac{\pi}{8} \int_{0}^{1}
\frac{dt}{ (t - \frac{1}{2})^2 + \frac{1}{4} }.
\]
Step 4: Use formula: $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$.
Put $u = t - \frac{1}{2}$:
\[
2I = \frac{\pi}{8} \int_{-1/2}^{1/2}
\frac{du}{u^2 + (1/2)^2} = \frac{\pi}{8} \times \frac{1}{\frac{1}{2}} \Big[ \tan^{-1} (2u) \Big]_{-1/2}^{1/2}.
\]
\[
= \frac{\pi}{4} [\tan^{-1} 1 - \tan^{-1}(-1)]
= \frac{\pi}{4} [\frac{\pi}{4} + \frac{\pi}{4}] = \frac{\pi}{4} \times \frac{\pi}{2} = \frac{\pi^2}{8}.
\]
Therefore,
\[
I = \frac{\pi^2}{16}.
\]
Final Answer: $\boxed{\frac{\pi^2}{16}}$