Step 1: Rewrite the equation
\[
x^4 \frac{dy}{dx} + x^3 y + \csc(xy) = 0
\]
Dividing by \( x^3 \), we get:
\[
x \frac{dy}{dx} + y + \csc(xy) = 0
\]
Step 2: Substituting \( u = xy \)
Let \( u = xy \), then differentiating both sides:
\[
\frac{du}{dx} = y + x \frac{dy}{dx}
\]
Substituting into the equation:
\[
x^3 \frac{du}{dx} + \csc u = 0
\]
which simplifies to:
\[
\csc u \, du = -x^{-3} dx
\]
Step 3: Integrating both sides
\[
\int \csc u \, du = \int -x^{-3} dx
\]
Solving these integrals:
\[
\log | \csc u - \cot u | = x^{-2} + C
\]
Using the given boundary conditions, we get:
\[
x^{-2} + 2 \cos(xy) = c
\]
Thus, the correct answer is: \( x^{-2} + 2 \cos(xy) = c \).