Start with numerator:
\[
\sin \theta (1 + \tan \theta) + \cos \theta (1 + \cot \theta)
= \sin \theta + \sin \theta \tan \theta + \cos \theta + \cos \theta \cot \theta
\]
Use identities:
\[
\tan \theta = \frac{\sin \theta}{\cos \theta},\quad \cot \theta = \frac{\cos \theta}{\sin \theta}
\Rightarrow \text{numerator} = \sin \theta + \frac{\sin^2 \theta}{\cos \theta} + \cos \theta + \frac{\cos^2 \theta}{\sin \theta}
\]
Denominator:
\[
(\cos \theta - \sin \theta)(\sec \theta - \cos \theta)(\tan \theta + \cot \theta)
\]
Noticing complexity, test \( \theta = 45^\circ \):
Then:
\[
\sin \theta = \cos \theta = \frac{1}{\sqrt{2}},\quad \tan \theta = \cot \theta = 1,\quad \sec \theta = \csc \theta = \sqrt{2}
\]
Numerator:
\[
\frac{1}{\sqrt{2}}(1 + 1) + \frac{1}{\sqrt{2}}(1 + 1) = 2 \cdot \frac{1}{\sqrt{2}} \cdot 2 = \frac{4}{\sqrt{2}} = 2\sqrt{2}
\]
Denominator:
\[
% Option
(0)(\sqrt{2} - \frac{1}{\sqrt{2}})(1 + 1) = 0
\Rightarrow \text{undefined at } \theta = 45^\circ
\]
Try algebraic manipulation — numerator becomes:
\[
\sin \theta + \cos \theta + \frac{\sin^2 \theta}{\cos \theta} + \frac{\cos^2 \theta}{\sin \theta}
= \sin \theta + \cos \theta + \sin \theta \tan \theta + \cos \theta \cot \theta
= \csc \theta + \sec \theta
\]