We are given a telescoping sum:
\[
\sum_{k = 1}^{89} \frac{1}{\sin k^\circ \sin (k+1)^\circ}
\]
We use the identity:
\[
\frac{1}{\sin A \sin B} = \frac{\cos(A - B) - \cos(A + B)}{2 \sin A \sin B}
\]
Instead, an efficient approach is:
Let us observe that:
\[
\frac{1}{\sin k^\circ \sin (k+1)^\circ} = \cot k^\circ - \cot(k+1)^\circ
\]
So:
\[
\sum_{k=1}^{89} \frac{1}{\sin k^\circ \sin(k+1)^\circ} = \sum_{k=1}^{89} (\cot k^\circ - \cot(k+1)^\circ)
\]
This is a telescoping sum:
\[
(\cot 1^\circ - \cot 2^\circ) + (\cot 2^\circ - \cot 3^\circ) + \cdots + (\cot 89^\circ - \cot 90^\circ)
\Rightarrow \cot 1^\circ - \cot 90^\circ = \cot 1^\circ - 0 = \cot 1^\circ
\]
Now,
\[
\cot 1^\circ = \frac{\cos 1^\circ}{\sin 1^\circ}
\Rightarrow \frac{1}{\sin 1^\circ} \cdot \cot 1^\circ = \frac{1}{\sin 1^\circ} \cdot \frac{\cos 1^\circ}{\sin 1^\circ} = \frac{\cos 1^\circ}{\sin^2 1^\circ}
\]
% Final Answer:
\[
\boxed{ \frac{\cos 1^\circ}{\sin^2 1^\circ} }
\]