>
Exams
>
Mathematics
>
Trigonometry
>
evaluate frac 1 sin 1 circ sin 2 circ frac 1 sin 2
Question:
Evaluate: $$ \frac{1}{\sin 1^\circ \sin 2^\circ} + \frac{1}{\sin 2^\circ \sin 3^\circ} + \cdots + \frac{1}{\sin 89^\circ \sin 90^\circ} $$
Show Hint
Use telescoping sums when you see symmetric reciprocal products like \( \frac{1}{\sin A \sin B} \). Look for identities to collapse the series.
AP EAPCET - 2022
AP EAPCET
Updated On:
May 20, 2025
\( \frac{\cos 1^\circ}{\sin 1^\circ} \)
\( \frac{\cos 1^\circ}{\sin^2 1^\circ} \)
\( \frac{\sin 1^\circ}{\cos 1^\circ} \)
\( \frac{\sin^2 1^\circ}{\cos 1^\circ} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
We are given a telescoping sum: \[ \sum_{k = 1}^{89} \frac{1}{\sin k^\circ \sin (k+1)^\circ} \] We use the identity: \[ \frac{1}{\sin A \sin B} = \frac{\cos(A - B) - \cos(A + B)}{2 \sin A \sin B} \] Instead, an efficient approach is: Let us observe that: \[ \frac{1}{\sin k^\circ \sin (k+1)^\circ} = \cot k^\circ - \cot(k+1)^\circ \] So: \[ \sum_{k=1}^{89} \frac{1}{\sin k^\circ \sin(k+1)^\circ} = \sum_{k=1}^{89} (\cot k^\circ - \cot(k+1)^\circ) \] This is a telescoping sum: \[ (\cot 1^\circ - \cot 2^\circ) + (\cot 2^\circ - \cot 3^\circ) + \cdots + (\cot 89^\circ - \cot 90^\circ) \Rightarrow \cot 1^\circ - \cot 90^\circ = \cot 1^\circ - 0 = \cot 1^\circ \] Now, \[ \cot 1^\circ = \frac{\cos 1^\circ}{\sin 1^\circ} \Rightarrow \frac{1}{\sin 1^\circ} \cdot \cot 1^\circ = \frac{1}{\sin 1^\circ} \cdot \frac{\cos 1^\circ}{\sin 1^\circ} = \frac{\cos 1^\circ}{\sin^2 1^\circ} \] % Final Answer: \[ \boxed{ \frac{\cos 1^\circ}{\sin^2 1^\circ} } \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometry
In a right triangle ABC, right-angled at A, if $\sin B = \dfrac{1}{4}$, then the value of $\sec B$ is
CBSE Class X - 2025
Mathematics
Trigonometry
View Solution
A peacock sitting on the top of a tree of height 10 m observes a snake moving on the ground. If the snake is $10\sqrt{3}$ m away from the base of the tree, then angle of depression of the snake from the eye of the peacock is
CBSE Class X - 2025
Mathematics
Trigonometry
View Solution
The given graph illustrates:
CBSE CLASS XII - 2025
Mathematics
Trigonometry
View Solution
If \( \sin \theta + \cos \theta = \sqrt{2} \), what is the value of \( \sin \theta \cos \theta \)?
BITSAT - 2025
Mathematics
Trigonometry
View Solution
Prove that \(\dfrac{\sin \theta}{1 + \cos \theta} + \dfrac{1 + \cos \theta}{\sin \theta} = 2\csc \theta\)
CBSE Class X - 2025
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in AP EAPCET exam
The number of all five-letter words (with or without meaning) having at least one repeated letter that can be formed by using the letters of the word INCONVENIENCE is:
AP EAPCET - 2025
Binomial Expansion
View Solution
If \(\alpha, \beta, \gamma\) are the roots of the equation \[ x^3 - 13x^2 + kx + 189 = 0 \] such that \(\beta - \gamma = 2\), then find the ratio \(\beta + \gamma : k + \alpha\).
AP EAPCET - 2025
Algebra
View Solution
In a container of volume 16.62 m$^3$ at 0°C temperature, 2 moles of oxygen, 5 moles of nitrogen and 3 moles of hydrogen are present, then the pressure in the container is (Universal gas constant = 8.31 J/mol K)
AP EAPCET - 2025
Ideal gas equation
View Solution
If
\[ A = \begin{bmatrix} x & 2 & 1 \\ -2 & y & 0 \\ 2 & 0 & -1 \end{bmatrix}, \] where \( x \) and \( y \) are non-zero real numbers, trace of \( A = 0 \), and determinant of \( A = -6 \), then the minor of the element 1 of \( A \) is:}
AP EAPCET - 2025
Complex numbers
View Solution
Two objects of masses 5 kg and 10 kg are placed 2 meters apart. What is the gravitational force between them?
(Use \(G = 6.67 \times 10^{-11}\, \mathrm{Nm^2/kg^2}\))
AP EAPCET - 2025
Gravitation
View Solution
View More Questions