>
Exams
>
Mathematics
>
Trigonometry
>
evaluate frac 1 sin 1 circ sin 2 circ frac 1 sin 2
Question:
Evaluate: $$ \frac{1}{\sin 1^\circ \sin 2^\circ} + \frac{1}{\sin 2^\circ \sin 3^\circ} + \cdots + \frac{1}{\sin 89^\circ \sin 90^\circ} $$
Show Hint
Use telescoping sums when you see symmetric reciprocal products like \( \frac{1}{\sin A \sin B} \). Look for identities to collapse the series.
AP EAPCET - 2022
AP EAPCET
Updated On:
May 20, 2025
\( \frac{\cos 1^\circ}{\sin 1^\circ} \)
\( \frac{\cos 1^\circ}{\sin^2 1^\circ} \)
\( \frac{\sin 1^\circ}{\cos 1^\circ} \)
\( \frac{\sin^2 1^\circ}{\cos 1^\circ} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
We are given a telescoping sum: \[ \sum_{k = 1}^{89} \frac{1}{\sin k^\circ \sin (k+1)^\circ} \] We use the identity: \[ \frac{1}{\sin A \sin B} = \frac{\cos(A - B) - \cos(A + B)}{2 \sin A \sin B} \] Instead, an efficient approach is: Let us observe that: \[ \frac{1}{\sin k^\circ \sin (k+1)^\circ} = \cot k^\circ - \cot(k+1)^\circ \] So: \[ \sum_{k=1}^{89} \frac{1}{\sin k^\circ \sin(k+1)^\circ} = \sum_{k=1}^{89} (\cot k^\circ - \cot(k+1)^\circ) \] This is a telescoping sum: \[ (\cot 1^\circ - \cot 2^\circ) + (\cot 2^\circ - \cot 3^\circ) + \cdots + (\cot 89^\circ - \cot 90^\circ) \Rightarrow \cot 1^\circ - \cot 90^\circ = \cot 1^\circ - 0 = \cot 1^\circ \] Now, \[ \cot 1^\circ = \frac{\cos 1^\circ}{\sin 1^\circ} \Rightarrow \frac{1}{\sin 1^\circ} \cdot \cot 1^\circ = \frac{1}{\sin 1^\circ} \cdot \frac{\cos 1^\circ}{\sin 1^\circ} = \frac{\cos 1^\circ}{\sin^2 1^\circ} \] % Final Answer: \[ \boxed{ \frac{\cos 1^\circ}{\sin^2 1^\circ} } \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometry
Prove that \( \frac{\sec\theta - \tan\theta}{\sec\theta + \tan\theta} = 1 + 2\tan^2\theta - 2\sec\theta\tan\theta \)
Bihar Class X Board - 2025
Mathematics
Trigonometry
View Solution
Prove that \(\tan 7^\circ \cdot \tan 60^\circ \cdot \tan 83^\circ = \sqrt{3}\).
Bihar Class X Board - 2025
Mathematics
Trigonometry
View Solution
Prove that \(\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \frac{1+\cos\theta}{\sin\theta}\)
Bihar Class X Board - 2025
Mathematics
Trigonometry
View Solution
If \(\sin 3A = \cos(A - 26^\circ)\), where 3A is an acute angle, then find the value of A.
Bihar Class X Board - 2025
Mathematics
Trigonometry
View Solution
If \(\tan\theta = \frac{5}{12}\), then find the value of \(\sin\theta + \cos\theta\).
Bihar Class X Board - 2025
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in AP EAPCET exam
Three blocks A, B and C are arranged as shown in the figure such that the distance between two successive blocks is 10 m. Block A is displaced towards block B by 2 m and block C is displaced towards block B by 3 m. The distance through which the block B should be moved so that the centre of mass of the system does not change is
AP EAPCET - 2025
Centre of mass
View Solution
\[ \left( \sqrt{2} + 1 + i \sqrt{2} - 1 \right)^8 = ? \]
AP EAPCET - 2025
Complex numbers
View Solution
For all $n \in \mathbb{N}$, if $n(n^2+3)$ is divisible by $k$, then the maximum value of $k$ is
AP EAPCET - 2025
Number Systems
View Solution
If \(\alpha\) is the angle made by the perpendicular drawn from origin to the line \(12x - 5y + 13 = 0\) with the positive X-axis in anti-clockwise direction, then \(\alpha =\)
AP EAPCET - 2025
Geometry
View Solution
If
\[ A = \begin{bmatrix} x & 2 & 1 \\ -2 & y & 0 \\ 2 & 0 & -1 \end{bmatrix}, \] where \( x \) and \( y \) are non-zero real numbers, trace of \( A = 0 \), and determinant of \( A = -6 \), then the minor of the element 1 of \( A \) is:}
AP EAPCET - 2025
Complex numbers
View Solution
View More Questions