>
Exams
>
Mathematics
>
Trigonometry
>
evaluate frac 1 sin 1 circ sin 2 circ frac 1 sin 2
Question:
Evaluate: $$ \frac{1}{\sin 1^\circ \sin 2^\circ} + \frac{1}{\sin 2^\circ \sin 3^\circ} + \cdots + \frac{1}{\sin 89^\circ \sin 90^\circ} $$
Show Hint
Use telescoping sums when you see symmetric reciprocal products like \( \frac{1}{\sin A \sin B} \). Look for identities to collapse the series.
AP EAPCET - 2022
AP EAPCET
Updated On:
May 20, 2025
\( \frac{\cos 1^\circ}{\sin 1^\circ} \)
\( \frac{\cos 1^\circ}{\sin^2 1^\circ} \)
\( \frac{\sin 1^\circ}{\cos 1^\circ} \)
\( \frac{\sin^2 1^\circ}{\cos 1^\circ} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
We are given a telescoping sum: \[ \sum_{k = 1}^{89} \frac{1}{\sin k^\circ \sin (k+1)^\circ} \] We use the identity: \[ \frac{1}{\sin A \sin B} = \frac{\cos(A - B) - \cos(A + B)}{2 \sin A \sin B} \] Instead, an efficient approach is: Let us observe that: \[ \frac{1}{\sin k^\circ \sin (k+1)^\circ} = \cot k^\circ - \cot(k+1)^\circ \] So: \[ \sum_{k=1}^{89} \frac{1}{\sin k^\circ \sin(k+1)^\circ} = \sum_{k=1}^{89} (\cot k^\circ - \cot(k+1)^\circ) \] This is a telescoping sum: \[ (\cot 1^\circ - \cot 2^\circ) + (\cot 2^\circ - \cot 3^\circ) + \cdots + (\cot 89^\circ - \cot 90^\circ) \Rightarrow \cot 1^\circ - \cot 90^\circ = \cot 1^\circ - 0 = \cot 1^\circ \] Now, \[ \cot 1^\circ = \frac{\cos 1^\circ}{\sin 1^\circ} \Rightarrow \frac{1}{\sin 1^\circ} \cdot \cot 1^\circ = \frac{1}{\sin 1^\circ} \cdot \frac{\cos 1^\circ}{\sin 1^\circ} = \frac{\cos 1^\circ}{\sin^2 1^\circ} \] % Final Answer: \[ \boxed{ \frac{\cos 1^\circ}{\sin^2 1^\circ} } \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometry
If \[ \frac{\tan(A-B)}{\tan A}+\frac{\sin^2 C}{\sin^2 A}=1, \quad A,B,C\in\left(0,\frac{\pi}{2}\right), \] then:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
The number of 4-letter words, with or without meaning, which can be formed using the letters PQRPRSTUVP, is :
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Let \( y = y(x) \) be the solution of the differential equation \( x^2 dy + (4x^2 y + 2\sin x)dx = 0 \), \( x>0 \), \( y\left(\frac{\pi}{2}\right) = 0 \). Then \( \pi^4 y\left(\frac{\pi}{3}\right) \) is equal to :
JEE Main - 2026
Mathematics
Trigonometry
View Solution
If \[ k=\tan\!\left(\frac{\pi}{4}+\frac{1}{2}\cos^{-1}\!\left(\frac{2}{3}\right)\right) +\tan\!\left(\frac{1}{2}\sin^{-1}\!\left(\frac{2}{3}\right)\right), \] then the number of solutions of the equation \[ \sin^{-1}(kx-1)=\sin^{-1}x-\cos^{-1}x \] is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Let \( \dfrac{\pi}{2} < \theta < \pi \) and \( \cot \theta = -\dfrac{1}{2\sqrt{2}} \). Then the value of \[ \sin\!\left(\frac{15\theta}{2}\right)(\cos 8\theta + \sin 8\theta) + \cos\!\left(\frac{15\theta}{2}\right)(\cos 8\theta - \sin 8\theta) \] is equal to
JEE Main - 2026
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in AP EAPCET exam
In a series LCR circuit, the voltages across the capacitor, resistor, and inductor are in the ratio 2:3:6. If the voltage of the source in the circuit is 240 V, then the voltage across the inductor is
AP EAPCET - 2025
Electromagnetic induction
View Solution
0.25 moles of $ \text{CH}_2\text{FCOOH} $ was dissolved in $ 0.5 \, \text{kg} $ of water. The depression in freezing point of the resultant solution was observed as $ 1^\circ \text{C} $. What is the van't Hoff factor? ($ K_f = 1.86 \, \text{K kg mol}^{-1} $)
AP EAPCET - 2025
Colligative Properties
View Solution
At $T(K)$, the vapor pressure of water is $x$ kPa. What is the vapor pressure (in kPa) of 1 molal solution containing non-volatile solute?
AP EAPCET - 2025
Colligative Properties
View Solution
At 300 K, vapour pressure of pure liquid A is 70 mm Hg. It forms an ideal solution with liquid B. Mole fraction of B = 0.2 and total vapour pressure of solution = 84 mm Hg. What is vapour pressure (in mm) of pure B?
AP EAPCET - 2025
Colligative Properties
View Solution
A 1% (w/v) aqueous solution of a certain solute is isotonic with a 3% (w/v) solution of glucose (molar mass 180 g mol$^{-1}$). The molar mass of solute (in g mol$^{-1}$) is
AP EAPCET - 2025
Colligative Properties
View Solution
View More Questions