Step 1: Use product-to-sum formula for \(\cos x \cos 2x\):
\[
\cos x \cos 2x = \frac{1}{2} [\cos (x - 2x) + \cos (x + 2x)] = \frac{1}{2} [\cos(-x) + \cos 3x] = \frac{1}{2} [\cos x + \cos 3x]
\]
Step 2: Rewrite the integral:
\[
\int_0^{\frac{\pi}{6}} \cos x \cdot \cos 2x \, dx = \frac{1}{2} \int_0^{\frac{\pi}{6}} (\cos x + \cos 3x) \, dx = \frac{1}{2} \left( \int_0^{\frac{\pi}{6}} \cos x \, dx + \int_0^{\frac{\pi}{6}} \cos 3x \, dx \right)
\]
Step 3: Evaluate integrals:
\[
\int_0^{\frac{\pi}{6}} \cos x \, dx = \sin x \Big|_0^{\frac{\pi}{6}} = \sin \frac{\pi}{6} - \sin 0 = \frac{1}{2} - 0 = \frac{1}{2}
\]
\[
\int_0^{\frac{\pi}{6}} \cos 3x \, dx = \frac{\sin 3x}{3} \Big|_0^{\frac{\pi}{6}} = \frac{\sin \frac{\pi}{2}}{3} - 0 = \frac{1}{3}
\]
Step 4: Sum and multiply by \(\frac{1}{2}\):
\[
\frac{1}{2} \left( \frac{1}{2} + \frac{1}{3} \right) = \frac{1}{2} \times \frac{5}{6} = \frac{5}{12}
\]
Step 5: So the value is \(\frac{5}{12}\), which does not match any option.
---
Please verify the options or the integral again.
---