Step 1: Rewrite the integral:
\[
\int_0^4 \sqrt{x} \, dx = \int_0^4 x^{\frac{1}{2}} \, dx
\]
Step 2: Integrate using the power rule:
\[
\int x^{n} dx = \frac{x^{n+1}}{n+1} + c, \quad n \neq -1
\]
\[
\implies \int_0^4 x^{\frac{1}{2}} \, dx = \left[ \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_0^4 = \frac{2}{3} \left[ x^{\frac{3}{2}} \right]_0^4
\]
Step 3: Calculate \(4^{\frac{3}{2}}\):
\[
4^{\frac{3}{2}} = ( \sqrt{4} )^{3} = 2^{3} = 8
\]
Step 4: Substitute:
\[
\frac{2}{3} (8 - 0) = \frac{16}{3}
\]
None of the options match this answer, so please verify the question or options.
---