We are asked to evaluate the definite integral \[ \int\limits_{2}^3 x^2 \, dx \] as the limit of a sum.
Step 1: Partition the interval
Let the interval \([2, 3]\) be divided into \(n\) subintervals, each of width \[ \Delta x = \frac{3 - 2}{n} = \frac{1}{n} \]
Step 2: Choose sample points
Using right endpoints: \[ x_i = 2 + i \cdot \frac{1}{n}, \quad \text{for } i = 1, 2, \dots, n \]
Step 3: Define the Riemann sum
\[ \sum_{i=1}^{n} f(x_i) \cdot \Delta x = \sum_{i=1}^{n} \left(2 + \frac{i}{n}\right)^2 \cdot \frac{1}{n} \]
Step 4: Take the limit
\[ \lim_{n \to \infty} \sum_{i=1}^{n} \left(2 + \frac{i}{n}\right)^2 \cdot \frac{1}{n} = \int_{2}^{3} x^2 \, dx \]
Step 5: Compute the integral
\[ \int_{2}^{3} x^2 \, dx = \left[ \frac{x^3}{3} \right]_2^3 = \frac{3^3}{3} - \frac{2^3}{3} = \frac{27 - 8}{3} = \frac{19}{3} \]
Final Answer: \(\frac{19}{3}\)
We want to evaluate the definite integral \(\int\limits_{2}^3 x^2 \, dx\) using the definition of the integral as the limit of a Riemann sum.
The definition of the definite integral is:
\[ \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x \]
In this problem, we have:
First, calculate the width of each subinterval:
\[ \Delta x = \frac{b - a}{n} = \frac{3 - 2}{n} = \mathbf{\frac{1}{n}} \]
Next, determine the sample points \(x_i\). We will use the right endpoints of the subintervals:
\[ x_i = a + i \Delta x = 2 + i \left(\frac{1}{n}\right) = \mathbf{2 + \frac{i}{n}} \]
Now, evaluate the function \(f(x)\) at these sample points:
\[ f(x_i) = f\left(2 + \frac{i}{n}\right) = \left(2 + \frac{i}{n}\right)^2 \]
\[ f(x_i) = 2^2 + 2(2)\left(\frac{i}{n}\right) + \left(\frac{i}{n}\right)^2 = \mathbf{4 + \frac{4i}{n} + \frac{i^2}{n^2}} \]
Now, form the Riemann sum:
\[ \sum_{i=1}^n f(x_i) \Delta x = \sum_{i=1}^n \left(4 + \frac{4i}{n} + \frac{i^2}{n^2}\right) \left(\frac{1}{n}\right) \]
\[ = \frac{1}{n} \sum_{i=1}^n \left(4 + \frac{4i}{n} + \frac{i^2}{n^2}\right) \]
Distribute the summation:
\[ = \frac{1}{n} \left[ \sum_{i=1}^n 4 + \sum_{i=1}^n \frac{4i}{n} + \sum_{i=1}^n \frac{i^2}{n^2} \right] \]
Factor out constants from the summations:
\[ = \frac{1}{n} \left[ 4 \sum_{i=1}^n 1 + \frac{4}{n} \sum_{i=1}^n i + \frac{1}{n^2} \sum_{i=1}^n i^2 \right] \]
Use the standard summation formulas:
Substitute these formulas into the expression:
\[ = \frac{1}{n} \left[ 4(n) + \frac{4}{n} \left(\frac{n(n+1)}{2}\right) + \frac{1}{n^2} \left(\frac{n(n+1)(2n+1)}{6}\right) \right] \]
Simplify the terms:
\[ = \frac{1}{n} \left[ 4n + 2(n+1) + \frac{(n+1)(2n+1)}{6n} \right] \]
Distribute the \(\frac{1}{n}\) outside the bracket:
\[ = \frac{4n}{n} + \frac{2(n+1)}{n} + \frac{(n+1)(2n+1)}{6n^2} \]
\[ = 4 + 2\left(\frac{n+1}{n}\right) + \frac{2n^2 + 3n + 1}{6n^2} \]
\[ = 4 + 2\left(1 + \frac{1}{n}\right) + \left(\frac{2n^2}{6n^2} + \frac{3n}{6n^2} + \frac{1}{6n^2}\right) \]
\[ = 4 + 2\left(1 + \frac{1}{n}\right) + \left(\frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2}\right) \]
Finally, take the limit as \(n \to \infty\):
\[ \int_2^3 x^2 \, dx = \lim_{n \to \infty} \left[ 4 + 2\left(1 + \frac{1}{n}\right) + \left(\frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2}\right) \right] \]
As \(n \to \infty\), the terms \(\frac{1}{n}\), \(\frac{1}{2n}\), and \(\frac{1}{6n^2}\) all approach 0.
\[ = 4 + 2(1 + 0) + \left(\frac{1}{3} + 0 + 0\right) \]
\[ = 4 + 2(1) + \frac{1}{3} \]
\[ = 4 + 2 + \frac{1}{3} \]
\[ = 6 + \frac{1}{3} \]
\[ = \frac{18}{3} + \frac{1}{3} = \mathbf{\frac{19}{3}} \]
Comparing this with the given options, the correct option is:
\(\frac{19}{3}\)