We are asked to evaluate the definite integral \[ \int\limits_{2}^3 x^2 \, dx \] as the limit of a sum.
Step 1: Partition the interval
Let the interval \([2, 3]\) be divided into \(n\) subintervals, each of width \[ \Delta x = \frac{3 - 2}{n} = \frac{1}{n} \]
Step 2: Choose sample points
Using right endpoints: \[ x_i = 2 + i \cdot \frac{1}{n}, \quad \text{for } i = 1, 2, \dots, n \]
Step 3: Define the Riemann sum
\[ \sum_{i=1}^{n} f(x_i) \cdot \Delta x = \sum_{i=1}^{n} \left(2 + \frac{i}{n}\right)^2 \cdot \frac{1}{n} \]
Step 4: Take the limit
\[ \lim_{n \to \infty} \sum_{i=1}^{n} \left(2 + \frac{i}{n}\right)^2 \cdot \frac{1}{n} = \int_{2}^{3} x^2 \, dx \]
Step 5: Compute the integral
\[ \int_{2}^{3} x^2 \, dx = \left[ \frac{x^3}{3} \right]_2^3 = \frac{3^3}{3} - \frac{2^3}{3} = \frac{27 - 8}{3} = \frac{19}{3} \]
Final Answer: \(\frac{19}{3}\)
We want to evaluate the definite integral \(\int\limits_{2}^3 x^2 \, dx\) using the definition of the integral as the limit of a Riemann sum.
The definition of the definite integral is:
\[ \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x \]
In this problem, we have:
First, calculate the width of each subinterval:
\[ \Delta x = \frac{b - a}{n} = \frac{3 - 2}{n} = \mathbf{\frac{1}{n}} \]
Next, determine the sample points \(x_i\). We will use the right endpoints of the subintervals:
\[ x_i = a + i \Delta x = 2 + i \left(\frac{1}{n}\right) = \mathbf{2 + \frac{i}{n}} \]
Now, evaluate the function \(f(x)\) at these sample points:
\[ f(x_i) = f\left(2 + \frac{i}{n}\right) = \left(2 + \frac{i}{n}\right)^2 \]
\[ f(x_i) = 2^2 + 2(2)\left(\frac{i}{n}\right) + \left(\frac{i}{n}\right)^2 = \mathbf{4 + \frac{4i}{n} + \frac{i^2}{n^2}} \]
Now, form the Riemann sum:
\[ \sum_{i=1}^n f(x_i) \Delta x = \sum_{i=1}^n \left(4 + \frac{4i}{n} + \frac{i^2}{n^2}\right) \left(\frac{1}{n}\right) \]
\[ = \frac{1}{n} \sum_{i=1}^n \left(4 + \frac{4i}{n} + \frac{i^2}{n^2}\right) \]
Distribute the summation:
\[ = \frac{1}{n} \left[ \sum_{i=1}^n 4 + \sum_{i=1}^n \frac{4i}{n} + \sum_{i=1}^n \frac{i^2}{n^2} \right] \]
Factor out constants from the summations:
\[ = \frac{1}{n} \left[ 4 \sum_{i=1}^n 1 + \frac{4}{n} \sum_{i=1}^n i + \frac{1}{n^2} \sum_{i=1}^n i^2 \right] \]
Use the standard summation formulas:
Substitute these formulas into the expression:
\[ = \frac{1}{n} \left[ 4(n) + \frac{4}{n} \left(\frac{n(n+1)}{2}\right) + \frac{1}{n^2} \left(\frac{n(n+1)(2n+1)}{6}\right) \right] \]
Simplify the terms:
\[ = \frac{1}{n} \left[ 4n + 2(n+1) + \frac{(n+1)(2n+1)}{6n} \right] \]
Distribute the \(\frac{1}{n}\) outside the bracket:
\[ = \frac{4n}{n} + \frac{2(n+1)}{n} + \frac{(n+1)(2n+1)}{6n^2} \]
\[ = 4 + 2\left(\frac{n+1}{n}\right) + \frac{2n^2 + 3n + 1}{6n^2} \]
\[ = 4 + 2\left(1 + \frac{1}{n}\right) + \left(\frac{2n^2}{6n^2} + \frac{3n}{6n^2} + \frac{1}{6n^2}\right) \]
\[ = 4 + 2\left(1 + \frac{1}{n}\right) + \left(\frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2}\right) \]
Finally, take the limit as \(n \to \infty\):
\[ \int_2^3 x^2 \, dx = \lim_{n \to \infty} \left[ 4 + 2\left(1 + \frac{1}{n}\right) + \left(\frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2}\right) \right] \]
As \(n \to \infty\), the terms \(\frac{1}{n}\), \(\frac{1}{2n}\), and \(\frac{1}{6n^2}\) all approach 0.
\[ = 4 + 2(1 + 0) + \left(\frac{1}{3} + 0 + 0\right) \]
\[ = 4 + 2(1) + \frac{1}{3} \]
\[ = 4 + 2 + \frac{1}{3} \]
\[ = 6 + \frac{1}{3} \]
\[ = \frac{18}{3} + \frac{1}{3} = \mathbf{\frac{19}{3}} \]
Comparing this with the given options, the correct option is:
\(\frac{19}{3}\)
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: