Equivalent resistance of the following circuit (in ohms) is equal to \(\frac{x}{7}\). Value of x is equal to _____.

Let's analyze the circuit step-by-step to calculate the equivalent resistance between points A and B.
Given that the equivalent resistance is x/7 ohms and calculated equivalent resistance is 16/7, so the value of x is 16.
Six point charges are kept \(60^\circ\) apart from each other on the circumference of a circle of radius \( R \) as shown in figure. The net electric field at the center of the circle is ___________. (\( \varepsilon_0 \) is permittivity of free space) 
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.