The speed of electromagnetic waves in a medium is related to its relative permeability (\( \mu_r \)) and relative permittivity (\( \varepsilon_r \)) by the equation:
\[ \varepsilon_r \mu_r = \frac{c^2}{v^2}, \]
where:
- \( c = 3 \times 10^8 \, \text{ms}^{-1} \) (speed of light in vacuum),
- \( v = 1.5 \times 10^8 \, \text{ms}^{-1} \) (speed of light in the medium),
- \( \mu_r = 2.0 \) (relative permeability of the medium).
Substituting the given values:
\[ \varepsilon_r \times 2 = \frac{(3 \times 10^8)^2}{(1.5 \times 10^8)^2}. \]
Simplify:
\[ \varepsilon_r \times 2 = \frac{9 \times 10^{16}}{2.25 \times 10^{16}}. \]
\[ \varepsilon_r \times 2 = 4. \]
\[ \varepsilon_r = 2. \]
Final Answer: \( \varepsilon_r = 2 \) (Option 4)
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).