The speed of electromagnetic waves in a medium is related to its relative permeability (\( \mu_r \)) and relative permittivity (\( \varepsilon_r \)) by the equation:
\[ \varepsilon_r \mu_r = \frac{c^2}{v^2}, \]
where:
- \( c = 3 \times 10^8 \, \text{ms}^{-1} \) (speed of light in vacuum),
- \( v = 1.5 \times 10^8 \, \text{ms}^{-1} \) (speed of light in the medium),
- \( \mu_r = 2.0 \) (relative permeability of the medium).
Substituting the given values:
\[ \varepsilon_r \times 2 = \frac{(3 \times 10^8)^2}{(1.5 \times 10^8)^2}. \]
Simplify:
\[ \varepsilon_r \times 2 = \frac{9 \times 10^{16}}{2.25 \times 10^{16}}. \]
\[ \varepsilon_r \times 2 = 4. \]
\[ \varepsilon_r = 2. \]
Final Answer: \( \varepsilon_r = 2 \) (Option 4)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: