The speed of electromagnetic waves in a medium is related to its relative permeability (\( \mu_r \)) and relative permittivity (\( \varepsilon_r \)) by the equation:
\[ \varepsilon_r \mu_r = \frac{c^2}{v^2}, \]
where:
- \( c = 3 \times 10^8 \, \text{ms}^{-1} \) (speed of light in vacuum),
- \( v = 1.5 \times 10^8 \, \text{ms}^{-1} \) (speed of light in the medium),
- \( \mu_r = 2.0 \) (relative permeability of the medium).
Substituting the given values:
\[ \varepsilon_r \times 2 = \frac{(3 \times 10^8)^2}{(1.5 \times 10^8)^2}. \]
Simplify:
\[ \varepsilon_r \times 2 = \frac{9 \times 10^{16}}{2.25 \times 10^{16}}. \]
\[ \varepsilon_r \times 2 = 4. \]
\[ \varepsilon_r = 2. \]
Final Answer: \( \varepsilon_r = 2 \) (Option 4)
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
Choose the correct set of reagents for the following conversion:
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):