The speed of electromagnetic waves in a medium is related to its relative permeability (\( \mu_r \)) and relative permittivity (\( \varepsilon_r \)) by the equation:
\[ \varepsilon_r \mu_r = \frac{c^2}{v^2}, \]
where:
- \( c = 3 \times 10^8 \, \text{ms}^{-1} \) (speed of light in vacuum),
- \( v = 1.5 \times 10^8 \, \text{ms}^{-1} \) (speed of light in the medium),
- \( \mu_r = 2.0 \) (relative permeability of the medium).
Substituting the given values:
\[ \varepsilon_r \times 2 = \frac{(3 \times 10^8)^2}{(1.5 \times 10^8)^2}. \]
Simplify:
\[ \varepsilon_r \times 2 = \frac{9 \times 10^{16}}{2.25 \times 10^{16}}. \]
\[ \varepsilon_r \times 2 = 4. \]
\[ \varepsilon_r = 2. \]
Final Answer: \( \varepsilon_r = 2 \) (Option 4)
To find the relative permittivity of the medium, we begin with the relationship between the speed of electromagnetic waves, permittivity, and permeability. The speed of electromagnetic waves in a medium is given by:
\(v = \frac{c}{\sqrt{\mu_r \cdot \epsilon_r}}\)
where:
We need to find \(\epsilon_r\). Rearrange the formula to solve for \(\epsilon_r\):
\(\epsilon_r = \frac{c^2}{v^2 \cdot \mu_r}\)
Substitute the known values:
\(\epsilon_r = \frac{(3 \times 10^8)^2}{(1.5 \times 10^8)^2 \cdot 2}\)
Calculate the squared terms:
Substitute back into the formula:
\(\epsilon_r = \frac{9 \times 10^{16}}{2.25 \times 10^{16} \cdot 2}\)
Simplify the expression:
\(\epsilon_r = \frac{9}{4.5} = 2\)
Thus, the relative permittivity of the medium is \(2\).
The correct answer is: 2
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
