The volume of a sphere is given by:
\[ V = \frac{4}{3} \pi r^3. \]
For eight smaller spheres, the total volume is:
\[ 8 \times \frac{4}{3} \pi r^3 = \frac{4}{3} \pi R^3, \]
where \( R \) is the radius of the larger sphere.
Equating the volumes:
\[ 8 \times r^3 = R^3. \]
Taking the cube root of both sides:
\[ R = 2r. \]
The terminal velocity of a sphere moving through a fluid is given by:
\[ V = \frac{2r^2}{9\eta} (\rho_b - \rho_{\text{air}}), \]
where:
From the equation, terminal velocity is proportional to the square of the radius:
\[ V \propto r^2. \]
Using the proportionality:
\[ \frac{V_1}{V_2} = \left( \frac{r}{R} \right)^2. \]
Substituting \( R = 2r \):
\[ \frac{V_1}{V_2} = \left( \frac{r}{2r} \right)^2 = \frac{1}{4}. \]
Rewriting the ratio:
\[ V_2 = V_1 \times 4. \]
Given \( V_1 = 10 \, \text{km/s} \):
\[ V_2 = 10 \times 4 = 40 \, \text{km/s}. \]
The velocity \( V_2 \) is \( 40 \, \text{km/s} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: