The correct option is(A): \(3 a ^{3} \alpha \Delta T\).
\(\Delta V = V \gamma \Delta T\)
\(\Delta V =3 a ^{3} \alpha \Delta T\)
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Thermal expansion is the tendency of matter to change its shape, area, and volume in response to a change in temperature. Temperature is a monotonic function of the average molecular kinetic energy of a substance.
The expansion of the solid material is taken to be the linear expansion coefficient, as the expansion takes place in terms of height, thickness and length. The gaseous and liquid expansion takes the volume expansion coefficient. Normally, if the material is fluid, we can explain the changes in terms of volume change.
The bonding force among the molecules and atoms differs from material to material. These characteristics of the compounds and elements are known as the expansion coefficient.