We use the formula for temperature coefficient of resistance \( \alpha \):
\[
\alpha = \frac{R_2 - R_1}{R_1 (T_2 - T_1)}
\]
where:
- \( R_1 = 5 \, \Omega \) (resistance at \( T_1 = 30^\circ \text{C} \))
- \( R_2 = 6 \, \Omega \) (resistance at \( T_2 = 40^\circ \text{C} \))
Substituting the values into the formula:
\[
\alpha = \frac{6 - 5}{5 \times (40 - 30)} = \frac{1}{5 \times 10} = \frac{1}{50} = 0.002 \, \text{per °C}
\]
Thus, the temperature coefficient of resistance is \( 0.0020 \, \text{per °C} \).