To solve this problem, let's consider the forces and torques acting on the ladder. The ladder is supported on a rough floor and leans against a smooth wall. The key forces acting on the ladder are:
The ladder is at the verge of slipping when the static frictional force \( f = \mu N_f \). Let \( L \) be the length of the ladder. The torque balance about the point where the ladder touches the floor gives us:
\[\begin{align*} N \cdot h + \mu N_f \cdot \frac{L}{2} = N_f \cdot \frac{L}{2} \end{align*}\]For the ladder to be in equilibrium, the sum of vertical forces and horizontal forces must be zero. Thus:
\[\begin{align*} N_f = W + Mg,\quad N = f = \mu N_f \end{align*}\]Since \( f = N \):
\[\begin{align*} \mu N_f = N \end{align*}\]Thus, \( N_f = \frac{N}{\mu} \). Substituting this into the torque balance equation results in:
\[\begin{align*} N \cdot h + \mu \cdot \frac{N}{\mu} \cdot \frac{L}{2} = \frac{N}{\mu} \cdot \frac{L}{2} \end{align*}\]Simplifying, this equation becomes:
\[\begin{align*} N \cdot h + \frac{N \cdot L}{2} = \frac{N \cdot L}{2 \mu} \end{align*}\]Rearranging and solving for \( L \) yields:
\[\begin{align*} N \cdot h = \frac{N \cdot L}{2 }(1 - \frac{1}{\mu}) \end{align*}\]Simplifying further, and recognizing that the remaining torque relation allows us to solve for \( L \):
\[\begin{align*} L = 2h \mu \end{align*}\]Therefore, the horizontal distance moved by the man:\[\mu \cdot h\]
A 2 $\text{kg}$ mass is attached to a spring with spring constant $ k = 200, \text{N/m} $. If the mass is displaced by $ 0.1, \text{m} $, what is the potential energy stored in the spring?