Question:

$ \int e^{xloga }e^{x} dx $ is equal to

Updated On: Oct 19, 2023
  • $ (ae)^x+C $
  • $ \frac{(ae)^x}{log(ae)}+C $
  • $ \frac{(e)^x}{1+log a}+C $
  • $None\,of\,these$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

$\int e^{x\,log\,a} e^{x}dx $
$I=\int a^{x}\cdot e^{x} dx \ldots\left(i\right)$
$\Rightarrow I=\left[e^{x}\cdot\frac{a^{x}}{log_{e} a}-\int e^{x}\cdot\frac{a^{x}}{log_{e} a} dx\right]$
$\Rightarrow I=\frac{e^{x}\cdot a^{x}}{log_{e}a}-\frac{1}{log_{e} a}\int e^{x}\cdot a^{x}\cdot dx $
$\Rightarrow I=\frac{e^{x}\cdot a^{x}}{log_{e} a }-\frac{1}{log_{e} a} \int e^{x}\cdot a^{x}\cdot dx$
$\Rightarrow I=\frac{e^{x}\cdot a^{x}}{log_{e} a}-\frac{1}{log_{e} a}\cdot I$ [from Et(i)]
$\Rightarrow \left(\frac{1+log_{e} a}{log_{e} a}\right) $
$I=\frac{e^{x}\cdot a^{x}}{log_{e} a}$
$\Rightarrow \left(log_{e} e+log_{e} a\right)$
$I=e^{x}\cdot a^{x}$
$\Rightarrow I=\frac{\left(ea\right)^{x}}{log\left(ae\right)}+c$
Was this answer helpful?
1
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.