Question:

e1tttdt=\int\frac{e^{\frac{1}{\sqrt t}}}{t\sqrt t}dt=

Updated On: Apr 4, 2025
  • 12e1t+C\frac{1}{2}e^{\frac{1}{\sqrt t}}+C
  • 12e1t+C\frac{-1}{2}e^{\frac{1}{\sqrt t}}+C
  • 2e1t+C2e^{\frac{1}{\sqrt t}}+C
  • 2e1t+C-2e^{\frac{1}{\sqrt t}}+C
  • e1t+Ce^{\frac{1}{\sqrt t}}+C
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are tasked with evaluating the integral: etttdt. \int \frac{e^{\sqrt{t}}}{t \sqrt{t}} \, dt.
Step 1: Use substitution Let us perform the substitution: u=tt=u2. u = \sqrt{t} \quad \Rightarrow \quad t = u^2. Now, differentiate both sides to find dt dt : dt=2udu. dt = 2u \, du. Substitute these into the integral: etttdt=euu2u2udu=2euu2udu. \int \frac{e^{\sqrt{t}}}{t \sqrt{t}} \, dt = \int \frac{e^u}{u^2 \cdot u} \cdot 2u \, du = \int \frac{2e^u}{u^2} \cdot u \, du. Simplifying: =2eudu. = \int 2e^u \, du.
Step 2: Integrate The integral of eu e^u with respect to u u is simply eu e^u . So we have: 2eudu=2eu+C. \int 2e^u \, du = 2e^u + C.
Step 3: Substitute back u=t u = \sqrt{t} Now, substitute u=t u = \sqrt{t} back into the expression: 2eu+C=2et+C. 2e^u + C = 2e^{\sqrt{t}} + C.

The correct option is (D) : 2e1t+C-2e^{\frac{1}{\sqrt t}}+C

Was this answer helpful?
0
0

Top Questions on Integration

View More Questions

Questions Asked in KEAM exam

View More Questions