Question:

dxx2x=\int\frac{dx}{x^2-x}=

Updated On: Apr 4, 2025
  • logxx1+C\log\frac{|x|}{|x-1|}+C
  • 1x+logx1+C\frac{-1}{x}+\log|x-1|+C
  • xlogx1+Cx\log|x-1|+C
  • logx1x+C\log\frac{|x-1|}{|x|}+C
  • xlogx1+C-x\log|x-1|+C
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are tasked with evaluating the integral: dxx2x \int \frac{dx}{x^2 - x} First, factor the denominator: x2x=x(x1) x^2 - x = x(x - 1) So, the integral becomes: dxx(x1) \int \frac{dx}{x(x - 1)} Next, use partial fraction decomposition to rewrite the integrand: 1x(x1)=Ax+Bx1 \frac{1}{x(x - 1)} = \frac{A}{x} + \frac{B}{x - 1} Multiply both sides by x(x1)x(x - 1): 1=A(x1)+Bx 1 = A(x - 1) + Bx Expanding: 1=A(x)A+Bx 1 = A(x) - A + Bx 1=(A+B)xA 1 = (A + B)x - A Equating the coefficients of xx and the constant term gives: A+B=0andA=1 A + B = 0 \quad \text{and} \quad -A = 1 Solving these equations: A=1,B=1 A = -1, \quad B = 1 Thus, the decomposition is: 1x(x1)=1x+1x1 \frac{1}{x(x - 1)} = \frac{-1}{x} + \frac{1}{x - 1} Now, integrate term by term: dxx2x=(1x+1x1)dx \int \frac{dx}{x^2 - x} = \int \left( \frac{-1}{x} + \frac{1}{x - 1} \right) dx =logx+logx1+C = -\log |x| + \log |x - 1| + C =logx1x+C = \log \left| \frac{x - 1}{x} \right| + C

The correct option is (D) : logx1x+C\log\frac{|x-1|}{|x|}+C

Was this answer helpful?
0
0

Top Questions on Integration

View More Questions

Questions Asked in KEAM exam

View More Questions