The correct answer is option (D): \(\left | \vec{c} \right |\leq \sqrt11\)
Given,
\(\begin{pmatrix}0 & -c_3 & c_2 \\c_3 & 0 & -c_1 \\-c_2 & c_1 & 0\end{pmatrix}\begin{pmatrix} 1 \\b_2 \\b_3\end{pmatrix}=\begin{pmatrix}3-c_1 \\1-c_2 \\-1-c_3 \end{pmatrix}\)
\(\overrightarrow{ a }=3 \hat{ i }+\hat{ j }-\hat{ k }\\ \overrightarrow{ b }=\hat{ i }+ b _2 \hat{ j }+ b _3 \hat{ k }\\ \overrightarrow{ c }= c _1 \hat{ i }+ c _2 \hat{ j }+ c _3 \hat{ k }\)
Solve the Matrix
b2c3−b3c2 = c1−3 .....(1)
c3−b3c1 = 1−c2 .......(2)
c2−b2c1 = 1+c3 ......(3)
The vectors \(\overrightarrow{a}\),\(\overrightarrow{b}\), and \(\overrightarrow{c}\) are represented in terms of their components along the \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\) axes respectively.
\((1) \ \hat{i} - (2) \hat{j} + (3) \hat{k}\)
\(\hat{i} (b_2c_3 - b_3c_2) - \hat{j} (c_3 - b_3c_1) + \hat{k} (c_2 - b_2c_1)\)
\(= c_1 \hat{i} + c_2 \hat{j} + c_2 \hat{k} - 3 \hat{i} - \hat{j} + \hat{k}\)
\(\vec{b} \times \vec{c} = \vec{c} - \vec{a}\)
Equating to \(\overrightarrow{c} - \overrightarrow{a}\):
Take dot product with \(\vec{b}\)
\(0 = \vec{c} \cdot \vec{b} - \vec{a} \cdot \vec{b}\)
\(\vec{b} \cdot \vec{c} = 0\)
\(\vec{b} \perp \vec{c}\)
\(\vec{b} \land \vec{c} = 90^\circ\)
Take dot product with \(\vec{c}\)
\(0 = |\vec{c}|^2 - \vec{a} \cdot \vec{c}\)
\(\vec{a} \cdot \vec{c} = |\vec{c}|^2\)
\(\vec{a} \cdot \vec{c} \neq 0\)
\(\vec{b} \times \vec{c} = \vec{c} - \vec{a}\)
Squaring the equation:
\(\begin{aligned} & |\vec{b}|^2|\vec{c}|^2=|\vec{c}|^2+|\vec{a}|^2-2 \vec{c} \cdot \vec{a} \\ & |\vec{b}|^2|\vec{c}|^2=|\vec{c}|^2+11-2|\vec{c}|^2 \\ & |\vec{c}|^2\left(|\vec{b}|^2+1\right)=11 \\ & |\vec{c}|^2=\frac{11}{|\vec{b}|^2+1} \\ & |\vec{c}|{\leq \sqrt{11}} \end{aligned}\)
Using \(\vec{a} \cdot \vec{b}=0\)
\(\begin{aligned} & b_2-b_3=-3 \text { also } \\ & b_2^2+b_3^2-2 b_2 b_3=9 b_2 b_3>0 \\ & b_2^2+b_3^2=9+2 b_2 b_3 \\ & b_2^2+b_3^2=9+2 b_2 b_3>9 \\ & b_2^2+b_3^2>9 \\ & |\vec{b}|=\sqrt{1+b_2^2+b_3^2} \\ & |\vec{b}|>\sqrt{10} \end{aligned}\)
S, the correct option is (B):\(\vec{b}.\vec{c}=0\), (C):\(\left | \vec{b} \right |> \sqrt10\) and (D): \(\left | \vec{c} \right |\leq \sqrt11\)
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.