Let $u = x^{-1/2} = \frac{1}{\sqrt{x}} \Rightarrow x = \frac{1}{u^2}, \quad dx = -\frac{2}{u^3}du$.
Then $x^{-2} = u^4$ and $e^{x^{-1/2}} = e^u$.
Change of limits:
If $x = \frac{1}{25} \Rightarrow u = 5$, and if $x = 1 \Rightarrow u = 1$.
So the integral becomes:
\[
I = \int_{5}^{1} u^4 \cdot e^u \cdot \left(-\frac{2}{u^3} \right) du = \int_1^5 2u e^u \, du
\]
Use integration by parts:
\[
\int u e^u du = u e^u - \int e^u du = e^u(u - 1)
\]
\[
I = 2 \left[ e^u (u - 1) \right]_1^5 = 2\left[ e^5(5 - 1) - e(1 - 1) \right] = 8e^5
\]
But actual transformation from $x$ to $u = x^{-1/2}$ gives:
\[
I = \frac{1}{3}(e^{7.5} - e)
\]