The displacement $ x $ versus time graph is shown below.
The displacement $ x $ is plotted against time $ t $. Choose the correct answer from the options given below:
To find the average and instantaneous velocities, we use the formulas:
1. Average Velocity: \[ \bar{v} = \frac{\Delta x}{\Delta t} \] where \( \Delta x \) is the change in displacement and \( \Delta t \) is the time interval.
2. Instantaneous Velocity: The instantaneous velocity is the slope of the displacement-time graph at any given point.
Now, let's calculate each part:
- (A) Average velocity during 0 to 3 s: The displacement changes from \( 0 \) to \( 30 \, \text{m} \) in 3 seconds: \[ \bar{v} = \frac{30 - 0}{3 - 0} = \frac{30}{3} = 10 \, \text{m/s} \]
Hence, (A) is correct.
- (B) Average velocity during 3 to 5 s: The displacement does not change from \( t = 3 \) to \( t = 5 \) s, so: \[ \bar{v} = \frac{0 - 0}{5 - 3} = 0 \, \text{m/s} \] Hence, (B) is correct.
- (C) Instantaneous velocity at \( t = 2 \) s: From the graph, the slope of the line at \( t = 2 \) s is: \[ v = 5 \, \text{m/s} \] Hence, (C) is correct.
- (D) Average velocity during 5 to 7 s: The displacement changes from \( 10 \, \text{m} \) to \( 10 \, \text{m} \) (no change) in 2 seconds, so: \[ \bar{v} = \frac{10 - 10}{7 - 5} = 0 \, \text{m/s} \] The instantaneous velocity at \( t = 6.5 \) s is also 0, so the average velocity is the same as the instantaneous velocity. Hence, (D) is correct.
- (E) Average velocity from \( t = 0 \) to \( t = 9 \) s: The displacement returns to zero at \( t = 9 \) s, so the average velocity is: \[ \bar{v} = \frac{0 - 0}{9 - 0} = 0 \, \text{m/s} \] Hence, (E) is correct.
Thus, the correct answer is (4).
Match List-I with List-II on the basis of two simple harmonic signals of the same frequency and various phase differences interacting with each other:
LIST-I (Lissajous Figure) | LIST-II (Phase Difference) | ||
---|---|---|---|
A. | Right handed elliptically polarized vibrations | I. | Phase difference = \( \frac{\pi}{4} \) |
B. | Left handed elliptically polarized vibrations | II. | Phase difference = \( \frac{3\pi}{4} \) |
C. | Circularly polarized vibrations | III. | No phase difference |
D. | Linearly polarized vibrations | IV. | Phase difference = \( \frac{\pi}{2} \) |
Choose the correct answer from the options given below:
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: