Step 1: Use the relationship between µ0, ϵ0, and the speed of light.- Given $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$, we know:
$\frac{1}{\mu_0 \epsilon_0} = c^2$.
Step 2: Analyze the dimensions.- Dimensional formula for c: [c] = $\frac{L}{T}$.- Hence, $[\frac{1}{\mu_0 \epsilon_0}]$ = $[c^2]$ = $\frac{L^2}{T^2}$.
Final Answer: The dimension is $\frac{L^2}{T^2}$
