Step 1: Use the relationship between µ0, ϵ0, and the speed of light.- Given $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$, we know:
$\frac{1}{\mu_0 \epsilon_0} = c^2$.
Step 2: Analyze the dimensions.- Dimensional formula for c: [c] = $\frac{L}{T}$.- Hence, $[\frac{1}{\mu_0 \epsilon_0}]$ = $[c^2]$ = $\frac{L^2}{T^2}$.
Final Answer: The dimension is $\frac{L^2}{T^2}$
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: