Determine if the points (1, 5), (2, 3) and (– 2, – 11) are collinear
Let the points (1, 5), (2, 3), and (−2, −11) be representing the vertices A, B, and C of the given triangle respectively.
Let, A=(1,5); B=(2, 3); C=(−2, −11)
\(\therefore\) AB=\(\sqrt{(1-2)^2+(5-3)^2}=\sqrt5\)
BC=\(\sqrt{(2-(-2))^2+(3-(-11))^2}=\sqrt{4^2+14^2}=\sqrt{16+196}=\sqrt{212}\)
CA=\(\sqrt{(1-(-2))^2+(5-(-11))^2}=\sqrt{3^2+16^2}=\sqrt{9+256}=\sqrt{265}\)
Since, AB+BC\(\neq\)CA
Therefore, the points (1, 5), (2, 3), and (−2, −11) are not collinear.
Given $\triangle ABC \sim \triangle PQR$, $\angle A = 30^\circ$ and $\angle Q = 90^\circ$. The value of $(\angle R + \angle B)$ is
Leaves of the sensitive plant move very quickly in response to ‘touch’. How is this stimulus of touch communicated and explain how the movement takes place?
Read the following sources of loan carefully and choose the correct option related to formal sources of credit:
(i) Commercial Bank
(ii) Landlords
(iii) Government
(iv) Money Lende