Step 1: Definitions. - A matrix $M$ is symmetric if $M^T = M$. - A matrix $M$ is skew-symmetric if $M^T = -M$.
Step 2: Given. $A$ and $B$ are symmetric matrices. So, \[ A^T = A, B^T = B \]
Step 3: Consider $(AB - BA)$. Take transpose: \[ (AB - BA)^T = (AB)^T - (BA)^T \] \[ = B^T A^T - A^T B^T \] Since $A^T = A$ and $B^T = B$: \[ = BA - AB = -(AB - BA) \]
Step 4: Conclusion. \[ (AB-BA)^T = -(AB-BA) \implies AB-BA \text{ is skew-symmetric.} \]
Final Answer: \[ \boxed{AB - BA \; \text{is skew-symmetric if $A$ and $B$ are symmetric.}} \]
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]