Current density in a cylindrical wire of radius \( R \) varies with radial distance as \( \beta (r + r^2) \). What is the current through the shaded section (sector angle \( \pi/6 \)) of the wire as shown in the figure?
Show Hint
For non-uniform current densities, integrate \( J(r) \cdot dA \) in cylindrical coordinates.
Total current \( I = \int J \cdot dA = \int_0^R \int_0^{\pi/6} \beta(r + r^2) \cdot r \, d\theta \, dr \)
\[
= \beta \int_0^{\pi/6} d\theta \int_0^R (r^2 + r^3) \, dr
= \beta \cdot \frac{\pi}{6} \cdot \left[ \frac{r^3}{3} + \frac{r^4}{4} \right]_0^R
= \frac{\pi \beta}{6} \left( \frac{R^3}{3} + \frac{R^4}{4} \right)
\]
Simplify the expression using LCM and rewrite in the given option format. Final result matches option (1).