The critical angle is given by:
\[ \sin C = \frac{n_2}{n_1}. \]
At \( C = 45^\circ \):
\[ \sin 45^\circ = \frac{1}{\sqrt{2}} = \frac{n_2}{n_1}. \]
Thus:
\[ \frac{n_1}{n_2} = \sqrt{2} : 1. \]
Final Answer: \(\sqrt{2} : 1\).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: