We are given the integral \( \int \sin(2x) \cos(x) \, dx \) and are asked to find the solution.
We can solve this using a trigonometric identity and substitution. First, use the identity for \( \sin(2x) \):
\( \sin(2x) = 2 \sin(x) \cos(x) \),
so the integral becomes:
\( \int 2 \sin(x) \cos^2(x) \, dx \).
Now, we can use the substitution \( u = \cos(x) \), so that \( du = -\sin(x) \, dx \). The integral becomes:
\( -2 \int u^2 \, du \).
The integral of \( u^2 \) is \( \frac{u^3}{3} \), so we have:
\( -\frac{2}{3} u^3 + C \).
Substituting \( u = \cos(x) \) back, we get:
\( -\frac{2}{3} \cos^3(x) + C \).
The correct answer is \( \frac{-2}{3} \cos^3(x) + C \).
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to: