Question:

sin2x cosx dx=\int\sin2x\ cosx\ dx=

Updated On: Apr 4, 2025
  • 13cos3x+C\frac{-1}{3}cos^3x+C
  • 23cos3x+C\frac{-2}{3}cos^3x+C
  • 23cos3x+C\frac{2}{3}cos^3x+C
  • 13cos3x+C\frac{1}{3}cos^3x+C
  • 43cos3x+C\frac{-4}{3}cos^3x+C
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given the integral sin(2x)cos(x)dx \int \sin(2x) \cos(x) \, dx and are asked to find the solution. 

We can solve this using a trigonometric identity and substitution. First, use the identity for sin(2x) \sin(2x) :

sin(2x)=2sin(x)cos(x) \sin(2x) = 2 \sin(x) \cos(x) ,

so the integral becomes:

2sin(x)cos2(x)dx \int 2 \sin(x) \cos^2(x) \, dx .

Now, we can use the substitution u=cos(x) u = \cos(x) , so that du=sin(x)dx du = -\sin(x) \, dx . The integral becomes:

2u2du -2 \int u^2 \, du .

The integral of u2 u^2 is u33 \frac{u^3}{3} , so we have:

23u3+C -\frac{2}{3} u^3 + C .

Substituting u=cos(x) u = \cos(x) back, we get:

23cos3(x)+C -\frac{2}{3} \cos^3(x) + C .

The correct answer is 23cos3(x)+C \frac{-2}{3} \cos^3(x) + C .

Was this answer helpful?
0
0

Top Questions on Integration

View More Questions

Questions Asked in KEAM exam

View More Questions