We are given the integral \( \int \sin(2x) \cos(x) \, dx \) and are asked to find the solution.
We can solve this using a trigonometric identity and substitution. First, use the identity for \( \sin(2x) \):
\( \sin(2x) = 2 \sin(x) \cos(x) \),
so the integral becomes:
\( \int 2 \sin(x) \cos^2(x) \, dx \).
Now, we can use the substitution \( u = \cos(x) \), so that \( du = -\sin(x) \, dx \). The integral becomes:
\( -2 \int u^2 \, du \).
The integral of \( u^2 \) is \( \frac{u^3}{3} \), so we have:
\( -\frac{2}{3} u^3 + C \).
Substituting \( u = \cos(x) \) back, we get:
\( -\frac{2}{3} \cos^3(x) + C \).
The correct answer is \( \frac{-2}{3} \cos^3(x) + C \).