1. **Using Gravitational Force and Centripetal Force:**
For a satellite of mass m orbiting Earth at height h above the surface, the gravitational force provides the required centripetal force:
GMm / (R + h)² = mv² / (R + h).
Simplifying, we get:
GM / (R + h) = v². (1)
2. **Relate Orbital Velocity to Period:**
The orbital velocity v can also be expressed in terms of the orbital period T:
v = 2π(R + h) / T. (2)
3. **Equate Gravitational Force with Centripetal Acceleration:**
We know that GM = gR² (where g is the acceleration due to gravity on Earth's surface). Substituting this in equation (1):
gR² / (R + h) = v².
4. **Combine Equations (1) and (2):**
Substitute v from equation (2) into the above expression:
gR² / (R + h) = (2π(R + h) / T)².
Rearranging gives:
T²R²g / (2π)² = (R + h)³.
5. **Solve for Height h:**
Taking the cube root of both sides, we get:
R + h = (T²R²g / 4π²)^(1/3).
Therefore,
h = (T²R²g / 4π²)^(1/3) - R.
**Answer:** (T²R²g / 4π²)^(1/3) - R (Option 2)
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: