According to the principle of homogeneity of dimensions, the dimensions on the left-hand side (LHS) must match those on the right-hand side (RHS).
1. Check Dimensions of Each Term in Option (3):
Consider:
\[ T^2 = \frac{4\pi^2 r^3}{GM}. \] - The dimensions of \( T^2 \) are \([T^2]\).
- The dimensions of \( G \) (gravitational constant) are \([M^{-1}L^3T^{-2}]\).
- The dimensions of \( M \) are \([M]\).
- The dimensions of \( r \) (radius) are \([L]\).
2. Dimensional Analysis:
Substitute the dimensions into RHS:
\[ \left[\frac{L^3}{M \times M^{-1}L^3T^{-2}}\right] = [T^2]. \] Since both sides have the dimension of \([T^2]\), option (3) is dimensionally correct.
Answer: \( \frac{4\pi^2 r^3}{GM} \)
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]