Considering only the principal values of the inverse trigonometric functions, the value of \(\tan(\sin^{-1}(\frac{3}{5})-2\cos^{-1}(\frac{2}{\sqrt5}))\) is
Let \[ 2 \cos^{-1} \left( \frac{2}{\sqrt{5}} \right) = \theta. \]
Step 1: Expressing in Terms of Half-Angle
\[ \frac{2}{\sqrt{5}} = \cos \frac{\theta}{2} \]
Therefore, \[ \tan \frac{\theta}{2} = \frac{1}{2}. \]
Step 2: Calculating Individual Trigonometric Functions
\[ \tan \sin^{-1} \left( \frac{3}{5} \right) = \frac{3}{4}, \quad \tan \cos^{-1} \left( \frac{2}{\sqrt{5}} \right) = \frac{4}{3}. \]
Step 3: Applying the Tangent Subtraction Formula
\[ \tan \left( \sin^{-1} \frac{3}{5} - \cos^{-1} \frac{2}{\sqrt{5}} \right) = \frac{\frac{3}{4} - \frac{4}{3}}{1 + \frac{3}{4} \cdot \frac{4}{3}} \]
Final Calculation
\[ = \frac{\frac{9}{12} - \frac{16}{12}}{1 + \frac{12}{12}} \] \[ = \frac{-7}{24} \]
To solve the problem, we evaluate the expression involving inverse trigonometric functions and find the value of:
\[ \tan \left( \sin^{-1}\left(\frac{3}{5}\right) - 2 \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \right) \]
1. Let:
\[
A = \sin^{-1}\left(\frac{3}{5}\right)
\]
\[
B = \cos^{-1}\left(\frac{2}{\sqrt{5}}\right)
\]
2. Find \(\sin A\) and \(\cos A\):
\[
\sin A = \frac{3}{5}
\]
\[
\cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}
\]
3. Find \(\cos B\) and \(\sin B\):
\[
\cos B = \frac{2}{\sqrt{5}}
\]
\[
\sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - \left(\frac{2}{\sqrt{5}}\right)^2} = \sqrt{1 - \frac{4}{5}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}}
\]
4. Calculate \(\tan(2B)\):
Using double angle formula:
\[
\tan(2B) = \frac{2 \tan B}{1 - \tan^2 B}
\]
First find \(\tan B\):
\[
\tan B = \frac{\sin B}{\cos B} = \frac{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}} = \frac{1}{2}
\]
Then,
\[
\tan(2B) = \frac{2 \times \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2} = \frac{1}{1 - \frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{4}{3}
\]
5. Calculate \(\tan(A - 2B)\):
Using subtraction formula:
\[
\tan (A - 2B) = \frac{\tan A - \tan(2B)}{1 + \tan A \tan(2B)}
\]
Calculate \(\tan A\):
\[
\tan A = \frac{\sin A}{\cos A} = \frac{3/5}{4/5} = \frac{3}{4}
\]
Now,
\[
\tan (A - 2B) = \frac{\frac{3}{4} - \frac{4}{3}}{1 + \frac{3}{4} \times \frac{4}{3}} = \frac{\frac{9}{12} - \frac{16}{12}}{1 + 1} = \frac{-\frac{7}{12}}{2} = -\frac{7}{24}
\]
Final Answer:
\[
\tan \left( \sin^{-1}\left(\frac{3}{5}\right) - 2 \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \right) = -\frac{7}{24}
\]
Prove that:
\( \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right), \quad x \in [0, 1] \)
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____