Considering only the principal values of the inverse trigonometric functions, the value of \(\tan(\sin^{-1}(\frac{3}{5})-2\cos^{-1}(\frac{2}{\sqrt5}))\) is
Let \[ 2 \cos^{-1} \left( \frac{2}{\sqrt{5}} \right) = \theta. \]
Step 1: Expressing in Terms of Half-Angle
\[ \frac{2}{\sqrt{5}} = \cos \frac{\theta}{2} \]
Therefore, \[ \tan \frac{\theta}{2} = \frac{1}{2}. \]
Step 2: Calculating Individual Trigonometric Functions
\[ \tan \sin^{-1} \left( \frac{3}{5} \right) = \frac{3}{4}, \quad \tan \cos^{-1} \left( \frac{2}{\sqrt{5}} \right) = \frac{4}{3}. \]
Step 3: Applying the Tangent Subtraction Formula
\[ \tan \left( \sin^{-1} \frac{3}{5} - \cos^{-1} \frac{2}{\sqrt{5}} \right) = \frac{\frac{3}{4} - \frac{4}{3}}{1 + \frac{3}{4} \cdot \frac{4}{3}} \]
Final Calculation
\[ = \frac{\frac{9}{12} - \frac{16}{12}}{1 + \frac{12}{12}} \] \[ = \frac{-7}{24} \]
To solve the problem, we evaluate the expression involving inverse trigonometric functions and find the value of:
\[ \tan \left( \sin^{-1}\left(\frac{3}{5}\right) - 2 \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \right) \]
1. Let:
\[
A = \sin^{-1}\left(\frac{3}{5}\right)
\]
\[
B = \cos^{-1}\left(\frac{2}{\sqrt{5}}\right)
\]
2. Find \(\sin A\) and \(\cos A\):
\[
\sin A = \frac{3}{5}
\]
\[
\cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}
\]
3. Find \(\cos B\) and \(\sin B\):
\[
\cos B = \frac{2}{\sqrt{5}}
\]
\[
\sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - \left(\frac{2}{\sqrt{5}}\right)^2} = \sqrt{1 - \frac{4}{5}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}}
\]
4. Calculate \(\tan(2B)\):
Using double angle formula:
\[
\tan(2B) = \frac{2 \tan B}{1 - \tan^2 B}
\]
First find \(\tan B\):
\[
\tan B = \frac{\sin B}{\cos B} = \frac{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}} = \frac{1}{2}
\]
Then,
\[
\tan(2B) = \frac{2 \times \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2} = \frac{1}{1 - \frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{4}{3}
\]
5. Calculate \(\tan(A - 2B)\):
Using subtraction formula:
\[
\tan (A - 2B) = \frac{\tan A - \tan(2B)}{1 + \tan A \tan(2B)}
\]
Calculate \(\tan A\):
\[
\tan A = \frac{\sin A}{\cos A} = \frac{3/5}{4/5} = \frac{3}{4}
\]
Now,
\[
\tan (A - 2B) = \frac{\frac{3}{4} - \frac{4}{3}}{1 + \frac{3}{4} \times \frac{4}{3}} = \frac{\frac{9}{12} - \frac{16}{12}}{1 + 1} = \frac{-\frac{7}{12}}{2} = -\frac{7}{24}
\]
Final Answer:
\[
\tan \left( \sin^{-1}\left(\frac{3}{5}\right) - 2 \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \right) = -\frac{7}{24}
\]
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?