The Correct Answer is \(\underline{2.36}.\)
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
| Trigonometrical equations | General Solutions |
| sin θ = 0 | θ = nπ |
| cos θ = 0 | θ = (nπ + π/2) |
| cos θ = 0 | θ = nπ |
| sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
| cos θ = 1 | θ = 2nπ |
| sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
| cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
| tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
| sin 2θ = sin 2α | θ = nπ ± α |
| cos 2θ = cos 2α | θ = nπ ± α |
| tan 2θ = tan 2α | θ = nπ ± α |