Convert the system to matrix form and perform row reduction:
\[ \left(\begin{array}{ccc|c} 1 & 1 & 1 & 5 \\ 1 & 2 & 2 & 9 \\ 1 & 3 & \lambda & \mu \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & 5 \\ 0 & 1 & 1 & 4 \\ 0 & 2 & \lambda - 1 & \mu - 5 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & 5 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & \lambda - 3 & \mu - 13 \end{array}\right) \]
For consistency: Unique solution if \(\lambda \neq 3\).
Infinite solutions if \(\lambda = 3\) and \(\mu = 13\).
No solution if \(\lambda = 3\) and \(\mu \neq 13\).
Therefore, the incorrect statement is:
(4) System has unique solution if \(\lambda = 1\) and \(\mu \neq 13\).
What is the general solution of the equation \( \cot\theta + \tan\theta = 2 \)?
The obtuse angle between lines \(2y = x + 1\) and \(y = 3x + 2\) is:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.