Convert the system to matrix form and perform row reduction:
\[ \left(\begin{array}{ccc|c} 1 & 1 & 1 & 5 \\ 1 & 2 & 2 & 9 \\ 1 & 3 & \lambda & \mu \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & 5 \\ 0 & 1 & 1 & 4 \\ 0 & 2 & \lambda - 1 & \mu - 5 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & 5 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & \lambda - 3 & \mu - 13 \end{array}\right) \]
For consistency: Unique solution if \(\lambda \neq 3\).
Infinite solutions if \(\lambda = 3\) and \(\mu = 13\).
No solution if \(\lambda = 3\) and \(\mu \neq 13\).
Therefore, the incorrect statement is:
(4) System has unique solution if \(\lambda = 1\) and \(\mu \neq 13\).
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).