\(4\text{HNO}_3(\text{l}) + 3\text{KCl}(\text{s}) \rightarrow \text{Cl}_2(\text{g}) + \text{NOCl}(\text{g}) + 2\text{H}_2\text{O}(\text{g}) + 3\text{KNO}_3(\text{s})\)
\(\because 110 \, \text{g of KNO}_3 \Rightarrow \text{moles of KNO}_3 = \frac{110}{101} = 1.089 \, \text{mol}\)
As, \(4 \, \text{mol of HNO}_3 \text{ produces } 3 \, \text{mol of KNO}_3\).
\(\text{Hence, the moles of HNO}_3 \text{ required to produce } 1.089 \text{ moles of KNO}_3 =\)
\(=43×1.089=1.452 mol\)
\(\text{Hence, mass of HNO}_3 \text{ required} = 1.452 \times 63\)
\(≃ 91.5 g\)
So, the correct option is (C): \(91.5\ \text{g}\)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: