Let \( P_1 \) and \( P_2 \) be \( (t_1^2, 2t_1) \) and \( (t_2^2, 2t_2) \), respectively, and \( P \equiv (t_1 t_2, t_1 + t_2) \) is given as \( (-2, 1) \).
\[ t_1 = 2, \, t_2 = -1 \quad \text{or} \quad t_1 = -2, \, t_2 = 2 \] \[ \Rightarrow P_1(4, 4) \, \text{and} \, P_2(1, -2) \]
Slope of \( SP_1 \) is \( \frac{4}{3} \), and the slope of \( SP_2 \) is infinity.
\[ \text{Equation of} \, SP_1: \, y - 0 = \frac{4}{3} (x - 1) \quad \Rightarrow \quad 4x - 3y - 4 = 0 \]
Equation of \( PQ_1 \):
\[ y - 1 = \frac{-4}{3}(x + 2) \quad \Rightarrow \quad 3x + 4y + 2 = 0 \] \[ \Rightarrow Q_1\left( \frac{2}{5}, \frac{-4}{5} \right) \]
Equation of \( SP_2 \) and \( PQ_2 \):
\[ x = 1, \quad y = 1 \quad \Rightarrow Q_2(1, 1) \] \[ \Rightarrow SQ_1, Q_2 = \frac{3\sqrt{10}}{5} \] \[ PQ_1 = \sqrt{ \left( \frac{-2 - 2}{5} \right)^2 + \left( 1 + 4 \right)^2} = \sqrt{\frac{144}{25} + \frac{81}{25}} = \sqrt{\frac{225}{25}} = 3 \] \[ SQ_2 = \sqrt{(1 - 1)^2 + (1 - 0)^2} = \sqrt{1} = 1 \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: