Consider the matrix $M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 1 & 4 \end{bmatrix}$. Let $P$ be a nonsingular matrix such that $P^{-1}MP$ is a diagonal matrix. Then the trace of the matrix $P^{-1}M^3P$ equals ...........
Step 1: Key property of similar matrices.
If $A$ and $B$ are similar matrices, i.e., $B = P^{-1}AP$, then they have the same trace. \[ \text{trace}(P^{-1}M^3P) = \text{trace}(M^3). \]
Step 2: Compute $M^3$.
First, $M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 1 & 4 \end{bmatrix}$. Since the first row and column correspond to a $1 \times 1$ block, we only need the lower-right $2\times2$ submatrix: \[ A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}. \] Compute $A^2$ and $A^3$: \[ A^2 = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}^2 = \begin{bmatrix} 11 & 14 \\ 7 & 18 \end{bmatrix}. \] \[ A^3 = A \times A^2 = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 11 & 14 \\ 7 & 18 \end{bmatrix} = \begin{bmatrix} 47 & 78 \\ 39 & 86 \end{bmatrix}. \] So, \[ M^3 = \begin{bmatrix} 1^3 & 0 & 0 \\ 0 & 47 & 78 \\ 0 & 39 & 86 \end{bmatrix}. \]
Step 3: Find the trace.
\[ \text{trace}(M^3) = 1 + 47 + 86 = 134 \]
Answer: $\boxed{134}$
The eigenvalues of the matrix

are \( \lambda_1, \lambda_2, \lambda_3 \). The value of \( \lambda_1 \lambda_2 \lambda_3 ( \lambda_1 + \lambda_2 + \lambda_3 ) \) is: